A Comparison Between the Use of an Infrared Contact Mat and an IMU During Kinematic Analysis of Horizontal Jumps
Date
Authors
Supervisor
Item type
Journal Article
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI AG
Abstract
Background/Objectives: This study compared step-by-step kinematic measurements from an infrared contact mat (IR-mat) and an inertial measurement unit (IMU) system during bounding and single leg jumping for speed, while also evaluating the validity of algorithms originally developed for sprinting and running when applied to horizontal jumps. The aim was to investigate differences in contact times between the systems. Methods: Nineteen female football players (15 ± 0.5 years, 61.0 ± 5.9 kg, 1.70 ± 0.06 m) performed attempts in both jumps over 20 m with maximum speed, of which the first eight steps were analysed. Results: Significant differences were found between the systems, with the IR-mat recording longer contact times than the IMU. The IR-mat began and ended its measurements slightly earlier and later, respectively, compared to the IMU system, likely due to the IMU’s algorithm, which was developed for sprinting with forefoot contact, while more midfoot and heel landing is used during jumps. Conclusions: Both systems provide reliable measurements; however, the IR mat consistently records slightly longer contact times for horizontal jumps. While the IMU is dependable, it exhibits a consistent bias compared to the IR mat. For bounding, the IR mat begins recording 0.018 s earlier at touch down and stops 0.021 s later. For single leg jumps, it starts 0.024 s earlier and ends 0.021 s later, resulting in contact times that are, on average, 0.039–0.045 s longer. These findings provide valuable insights for coaches and researchers in selecting appropriate measurement tools, highlighting the systematic differences between IR mats and IMUs in horizontal jump analysis.Description
Source
Biomechanics (Switzerland), ISSN: 2673-7078 (Print); 2673-7078 (Online), MDPI AG, 5(1), 14-14. doi: 10.3390/biomechanics5010014
Publisher's version
Rights statement
All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess.
