Robust and Adaptive Terrain Classification and Gait Event Detection System

aut.relation.articlenumbere21720
aut.relation.endpagee21720
aut.relation.issue11
aut.relation.journalHeliyon
aut.relation.startpagee21720
aut.relation.volume9
dc.contributor.authorShaikh, UQ
dc.contributor.authorShahzaib, M
dc.contributor.authorShakil, S
dc.contributor.authorBhatti, FA
dc.contributor.authorAamir Saeed, M
dc.date.accessioned2023-12-10T22:53:22Z
dc.date.available2023-12-10T22:53:22Z
dc.date.issued2023-11-01
dc.description.abstractReal-time gait event detection (GED) system can be utilized for gait analysis and tracking fitness activities. GED for various types of terrains (e.g., stair-walk, uneven surfaces, etc.) is still an open research problem. This study presents an inertial sensor-based approach for real-time GED system that works for diverse terrains in an uncontrolled environment. The GED system classifies three types of terrains, i.e., flat-walk, stair-ascend and stair-descend, with an average classification accuracy of 99%. It also accurately detects various gait events, including, toe-strike, heel-rise, toe-off, and heel-strike. It is computationally efficient, implemented on a low-cost microcontroller, works in real-time and can be used in portable rehabilitation devices for use in dynamic environments.
dc.identifier.citationHeliyon, ISSN: 2405-8440 (Print), Elsevier BV, 9(11), e21720-e21720. doi: 10.1016/j.heliyon.2023.e21720
dc.identifier.doi10.1016/j.heliyon.2023.e21720
dc.identifier.issn2405-8440
dc.identifier.urihttp://hdl.handle.net/10292/17048
dc.languageen
dc.publisherElsevier BV
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2405844023089284
dc.rights© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
dc.rights.accessrightsOpenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject4605 Data Management and Data Science
dc.subject46 Information and Computing Sciences
dc.subject42 Health Sciences
dc.subject4207 Sports Science and Exercise
dc.subjectPrevention
dc.titleRobust and Adaptive Terrain Classification and Gait Event Detection System
dc.typeJournal Article
pubs.elements-id530082
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Robust and adaptive terrain classification.pdf
Size:
946.47 KB
Format:
Adobe Portable Document Format
Description:
Journal article