Repository logo
 

Digital Twin Prospects in IoT-based Human Movement Monitoring Model

Supervisor

Item type

Journal Article

Degree name

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI AG

Abstract

Prehabilitation programs for abdominal pre-operative patients are increasingly recognized for improving surgical outcomes, reducing post-operative complications, and enhancing recovery. Internet of Things (IoT)-enabled human movement monitoring systems offer promising support in mixed-mode settings that combine clinical supervision with home-based independence. These systems enhance accessibility, reduce pressure on healthcare infrastructure, and address geographical isolation. However, current implementations often lack personalized movement analysis, adaptive intervention mechanisms, and real-time clinical integration, frequently requiring manual oversight and limiting functional outcomes. This review-based paper proposes a conceptual framework informed by the existing literature, integrating Digital Twin (DT) technology, and machine learning/Artificial Intelligence (ML/AI) to enhance IoT-based mixed-mode prehabilitation programs. The framework employs inertial sensors embedded in wearable devices and smartphones to continuously collect movement data during prehabilitation exercises for pre-operative patients. These data are processed at the edge or in the cloud. Advanced ML/AI algorithms classify activity types and intensities with high precision, overcoming limitations of traditional Fast Fourier Transform (FFT)-based recognition methods, such as frequency overlap and amplitude distortion. The Digital Twin continuously monitors IoT behavior and provides timely interventions to fine-tune personalized patient monitoring. It simulates patient-specific movement profiles and supports dynamic, automated adjustments based on real-time analysis. This facilitates adaptive interventions and fosters bidirectional communication between patients and clinicians, enabling dynamic and remote supervision. By combining IoT, Digital Twin, and ML/AI technologies, the proposed framework offers a novel, scalable approach to personalized pre-operative care, addressing current limitations and enhancing outcomes.

Description

Source

Sensors, ISSN: 1424-8220 (Print); 1424-8220 (Online), MDPI AG, 25(21), 6674-. doi: 10.3390/s25216674

Rights statement

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).