Metabolic Profiling of Mussel Larvae: Effect of Handling and Culture Conditions
Files
Date
Authors
Supervisor
Item type
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Gas chromatography mass spectroscopy was applied to characterize the metabolic profiles of hatchery-reared mussel (Perna canaliculus) larvae before and after a prolonged handling and water exchange process, and to investigate the effect of culture conditions. A decrease in succinate and an increase in alanine were observed after the water exchange, which indicated alterations in energy production and osmotic balance. However, these variations were subtle and it is unlikely that the water exchange practice had any lasting negative effects on larval physiology and performance. Multivariate pattern recognition tools (hierarchical clustering, principal component analysis and projection to latent squares discriminant analysis) were used to assess metabolite variations in larvae reared in low-density static and high-density flow through systems and to construct a culture condition classification model. Twelve metabolites contributed most towards the model, which indicated differences in energy, protein and lipid metabolism. The clear group separations were not represented by observable variations in morphological traits. This suggests that growth performance is metabolically buffered through an adaptive physiological mechanism to provide similar developmental characteristics under these conditions.