Effect of High Hydrostatic Pressure Processing on the Chemical Characteristics of Different Lamb Cuts

Kantono, K
Hamid, N
Oey, I
Wu, YC
Ma, Q
Farouk, M
Chadha, D
Item type
Journal Article
Degree name
Journal Title
Journal ISSN
Volume Title

The non-thermal high-pressure processing (HPP) technique has been used to increase the shelf life of food without compromising their nutritional and sensory qualities. This study aims to explore the potential application of HPP on New Zealand lamb meat. In this study, the effect of HPP, at different pressure treatments (200–600 MPa) on eight different lamb meat cuts in terms of lipid oxidation, fatty acid and free amino acid content were investigated. In general treatments between 400 and 600 MPa resulted in higher oxidation values in eye of loin, flat, heel, and tenderloin cuts. Saturated and monounsaturated fatty acid content were significantly lower with HPP treatment of almost all cuts (except rump and heel cuts) at all pressures. Polyunsaturated fatty acid content was significantly lower in HPP-treated inside, knuckle, and tenderloin cuts at 600 MPa compared to control. Nine essential free amino acids (valine, leucine, isoleucine, methionine, phenylalanine, lysine, histidine, tyrosine and tryptophan), and eight non-essential free amino acids (alanine, glycine, threonine, serine, proline, aspartic acid, glutamic acids and ornithine) were identified in the lamb cuts. HPP increased the total free amino acid composition significantly compared to control at all pressures for almost all cuts except the inside and eye of loin cuts. This study suggests that higher pressure treatments (i.e., 400 and 600 MPa) resulted in higher TBARS oxidation levels. Additionally, significant decreases in saturated and monounsaturated fatty acids and increase free amino acid content were observed in the majority of HPP-treated samples compared to control.

High-pressure processing; Lamb cuts; Fatty acids; Amino acids; Lipid oxidation
Foods, 9(10), 1444.
Rights statement
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).