On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

Dipongkor, Atish Kumar
Islam, Md Saiful
Hussain, Ishtiaque
Yongchareon, Sira
Mistry, Sajib
Item type
Journal Article
Degree name
Journal Title
Journal ISSN
Volume Title
Institute of Electrical and Electronics Engineers (IEEE)

Automated bug report assignment is critical for large-scale software projects where reported bugs are frequent and expert developers are required to fix them on time. Finding an appropriate developer with the necessary skill sets and prior experience in fixing similar bugs is difficult and can be an expensive process, depending on the severity of the reported bug. To address this issue, researchers have proposed several machine learning and deep learning-based automated bug report assignment techniques that make use of historical data on reported bugs as well as fixer information. However, there is still room for improvement in the performance of these techniques. In this paper, we propose a novel deep learning-based approach that utilizes two sets of features from the reported bugs’ textual data, namely contextual information and the occurrence of repeating keywords. We develop convolutional neural network and artificial neural network modules to mine these features. We then fuse these two sets of extracted features to assign a bug to an appropriate developer. We conduct extensive experiments on eight benchmark datasets of open-source, real-world software projects to assess the effectiveness of our approach. The experimental results demonstrate that our information fusion-based approach outperforms previous models and improves automated bug report assignment. Furthermore, we debug the errors of our proposed model and publish all source code so that future researchers can contribute to this problem.

46 Information and Computing Sciences , 4602 Artificial Intelligence , 4605 Data Management and Data Science , 4611 Machine Learning , 4612 Software Engineering , Neurosciences , 08 Information and Computing Sciences , 09 Engineering , 10 Technology , 40 Engineering , 46 Information and computing sciences
IEEE Access, ISSN: 2169-3536 (Print); 2169-3536 (Online), Institute of Electrical and Electronics Engineers (IEEE), PP(99), 1-1. doi: 10.1109/access.2023.3273595
Rights statement