
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

On Fusing Artificial and Convolutional
Neural Network Features for Automatic
Bug Assignments
ATISH KUMAR DIPONGKOR1, MD. SAIFUL ISLAM2, (SENIOR MEMBER, IEEE), ISHTIAQUE
HUSSAIN3, SIRA YONGCHAREON4, (SENIOR MEMBER, IEEE), AND SAJIB MISTRY5.
1Jashore University of Science and Technology, Bangladesh (e-mail: atish.cse@just.edu.bd)
2School of Information and Physical Sciences, The University of Newcastle, Australia (e-mail: saiful.islam@newcastle.edu.au)
3Bloomberg LP, New Jersey, United States (e-mail: ihussain@psu.edu)
4Auckland University of Technology, New Zealand (e-mail: sira.yongchareon@aut.ac.nz)
5Curtin University, Australia (e-mail: Sajib.Mistry@curtin.edu.au)

Corresponding author: Md. Saiful Islam (e-mail: saiful.islam@newcastle.edu.au).

ABSTRACT Automated bug report assignment is critical for large-scale software projects where reported
bugs are frequent and expert developers are required to fix them on time. Finding an appropriate developer
with the necessary skill sets and prior experience in fixing similar bugs is difficult and can be an expensive
process, depending on the severity of the reported bug. To address this issue, researchers have proposed
several machine learning and deep learning-based automated bug report assignment techniques that make
use of historical data on reported bugs as well as fixer information. However, there is still room for
improvement in the performance of these techniques. In this paper, we propose a novel deep learning-
based approach that utilizes two sets of features from the reported bugs’ textual data, namely contextual
information and the occurrence of repeating keywords. We develop convolutional neural network and
artificial neural network modules to mine these features. We then fuse these two sets of extracted features
to assign a bug to an appropriate developer. We conduct extensive experiments on eight benchmark datasets
of open-source, real-world software projects to assess the effectiveness of our approach. The experimental
results demonstrate that our information fusion-based approach outperforms previous models and improves
automated bug report assignment. Furthermore, we debug the errors of our proposed model and publish all
source code so that future researchers can contribute to this problem.

INDEX TERMS Artificial Neural Network, Bug Report Assignment, Convolutional Neural Network, Deep
Learning, Dimensionality Reduction

I. INTRODUCTION

BUGS in software are commonly caused by development
time constraints, a lack of skills or domain knowledge,

and insufficient testing. When these bugs are reported and
eventually fixed, they are frequently regarded as client feed-
back that can help a software gradually improve to perfection.
When a bug occurs in any industrial or open source project,
it is routinely textually documented in a ‘bug repository’
or ‘bug tracking system’. During bug triage, duplicate bug
reports are detected, reproduction steps are validated, severity
or priority is determined, and the report’s validity is assessed.
The bug report assignment process then finds and assigns
an appropriate developer to fix the bug. The bug report
assignment process, however, is not simple for large-scale
software projects because it requires bug assignments based

on the developers’ domain knowledge and expertise. Further-
more, large-scale software projects produce more bugs than
smaller projects. For example, Anvik et al. [1] reported that
nearly 300 bugs are discovered in various Mozilla projects
every day. Within Mozilla projects, the Firefox project alone
receives an average of eight bug reports per day that require
triage. It is an error-prone task that necessitates the use of
a specialised quality assurance team. Similar to Mozilla, the
Eclipse project receives a large number of daily bug reports,
forcing them to implement decentralized triaging mecha-
nisms in which teams are responsible for bug triaging for
their components [2]. Manual bug assignment is costly, time-
consuming, and unscalable because it consumes valuable de-
velopment time and resources [3]–[5]. As a result, automated
bug assignment is crucial, and improving the performance of

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

Bug Repository

Discussion

Duplicate Detection

1

2 3

Manual Bug Assignment

** ***

Determining Severity

x

ML/DL Classifier4

Automated Bug Assignment

5

FIGURE 1: Automated bug assignment based on machine learning (ML) and deep learning (DL) techniques

existing techniques can be vital.
To report a bug in a ‘bug tracking system’ such as JIRA [6]

or Bugzilla [7], among other optional things (e.g., stack trace,
screenshots, etc.), the ‘Title’ and ‘Description’ of that bug are
required. When a developer fixes a bug, his/her information
is added later. This repetitive process generates historical
data that grows over time. Machine Learning (ML) [8], [9]
and Deep Learning (DL) [10], [11] techniques can learn and
assign future bugs to an appropriate developer based on this
historical information. Bug report assignment, according to
those techniques, is a multi-class classification problem in
which the ‘Title’ and ‘Description’ of a bug is treated as
textual data and the respective developer who fixed that bug
is considered the label/class. The idea of ML and DL-based
automated bug assignment is illustrated in Fig. 1.

In this paper, we propose a novel DL-based model for
automatically assigning bugs among developers. Our model’s
architecture is made up of two major modules that extract fea-
tures: Convolutional Neural Network (CNN) and Artificial
Neural Network (ANN). These modules operate in parallel,
and their output is later fused to achieve the best perfor-
mance. The main goal of the CNN module is to use con-
volutional filters to extract contextual relationships between
adjacent words from the textual information of bug reports.
The ANN module, on the other hand, utilizes n-grams to
extract repeating keywords from bug reports. Convolutional
filters have been used in previous studies for automated bug
assignment [10], [12], [13]. To the best of our knowledge, we
are the first to use ANN module to extract repeating key-
words. To validate our research ideas, we conduct extensive
experiments that demonstrate that our model outperforms
existing DL-based techniques.

To be specific, the main contributions of this paper are as
follows.

1) We introduce novel data preprocessing steps to clean
the bug assignment dataset.

2) We develop a novel DL-based model to assign bugs
among developers that makes use of two types of fea-
tures: repeating keywords and contextual relationship
between consecutive words.

3) We conduct extensive experiments on eight bench-
mark, open-source large projects and compare results
to validate the robustness of our model against existing
techniques.

4) We perform novel debugging of our model’s errors
and present the insights for future research that could
improve overall performance.

5) The code for all of our experiments is freely available
on the companion website [14].

The remainder of the paper is structured as follows: In
Section II, we highlight notable existing works. Then, in
Section III, we discuss our proposed approach. We design
the necessary experiments to validate our research idea in
Section IV. Then, in Section V, we discuss our findings.
Finally, this study is concluded in Section VI.

II. RELATED WORK
Automatic bug assignment is an evolving field of study that
employs custom ML algorithms and, more recently, DL tech-
niques. The vast majority of these works are based on open
bug repositories and open-source projects (e.g.,Bugzilla,
JIRA, GNATS, Eclipse, Firefox, etc.). Anvik et al. [1] pro-
vide a detailed description of bug reports on their anatomy,
life-cycle, and interactions with various development roles
(e.g., reported, fixer, triager, etc.). In the following subsec-
tions, we discuss the background study in a categorized
fashion. In addition, we discuss how we combined contextual
information retrieval with convolutional neural networks in
other application domains.

A. INSIGHTS INTO BUG REPORTS, SOURCE CODE AND
DEVELOPERS
Though not directly related to automatic bug assignment,
there have been some early works that investigate the interre-
lationship between bug reports, source code, and developers.
These investigations can help determine future problem spots
for maintenance [15], ownership architecture that identifies
expert developers for different parts of the system [16], pre-
dict files that change together [17] and clustering of related
bug reports due to common errors [18]. Matter et al. [19]

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

used source code and vocabulary-based expertise models for
automatic bug assignment. Shokripour et al. [20] extended
that and used a location-based approach in indexing only
noun terms from four different sources (e.g., source code
identifiers for names of variables, classes, and methods;
source code comments, commit messages and previously
fixed bug reports) that predicted bug location into source code
files and then utilized term weighing method to provide a
bug report assignment recommendation. Almhana et al. [21]
used multi-objective search to rank bug reports for developers
according to their priorities and dependency between them.
In our work, we develop an automatic deep bug assignment
model based on features extracted from reported bugs and the
history of bug assignments. Our model is able to assign a bug
to a developer based on the description of bugs fixed by them
before.

B. AUTOMATIC BUG ASSIGNMENT USING MACHINE
LEARNING TECHNIQUES
Bug assignment is regarded as a supervised classification
problem where the training data and input are the textual
information from the bug reports and other related sources
and the output classes are the developers’ names. Researchers
have applied different ML algorithms in this context, e.g.,
Naïve Bayes, Bayesian Networks, C4.5, Support Vector Ma-
chines (SVM), and k-Nearest Neighbors (kNN) and other
feature selection, extraction techniques [22], [23]. Murphy
and Cubranic [2] are regarded as the first to apply ML algo-
rithms for bug assignment and reported 30% classification
accuracy on more than 15 thousand bug reports from the
Eclipse project. In follow-up works, Anvik et al. [1], [5]
improved the accuracy by filtering out noisy data based on
bug status and also compared different ML algorithms and
showed that the SVM algorithm provides the best results [1].
Neysiani et al. [24] proposed a feature extraction model to
identify duplicate bug reports. According to them, 1-gram
and 2-gram provide better validation performance. In this
study, we use the same n-grams to extract features from bug
reports to distinguish developers since it provided promising
results in earlier studies.

Ahsan et al. [25] used dimensionality reduction techniques
(e.g., feature extraction and selection), and Nasim et al. [26]
used alphabet frequency matrix with different ML algorithms
and both confirmed that SVM or variant of SVM algorithms
perform the best in automatic bug assignment. Wu et al. [27]
and Xia et al. [28] used kNN algorithms combined with
different similarity metrics, e.g., previous bug terms, term
weighting, and developer ranking for classifying bug reports.
Jonsson et al. [29] showed that for proprietary software
projects, the ensemble-based Stacked Generalization (SG)
technique that combines several classifiers scales well and
outperforms other techniques that use single individual clas-
sifiers. They also recommended that old bug reports should
be ignored and at least 2000 bug reports to be used for
training data. To improve bug assignment performance, Ge
et al. [30] proposed a high-dimensional hybrid data reduc-

tion technique by removing noninformative bug reports and
words. In this work, we train three traditional ML models
such as SVM, RF, and NB. During ML model training, we
remove words such as error logs and hyperlinks as we find
that these words affect the model performance negatively.
In addition, we apply Principle Component Analysis (PCA)
to select significant features from our training data, and
experimental results show that our ML models can provide
promising results than existing studies due to proper data
cleaning and feature selection.

C. AUTOMATIC BUG ASSIGNMENT USING DEEP
LEARNING TECHNIQUES
Zhang et al. [31] proposed a solution using a Deep Neural
Network (DNN) for assigning bugs to components instead
of developers. However, it is required to assign bugs to
developers because a bug can be assigned to multiple com-
ponents. Lee et al. [10] applied CNN and Word2Vec [32]
word embedding for feature extraction and showed that DL-
based techniques are better than other ML techniques in bug
assignment. Mani et al. [11] used a deep bidirectional recur-
rent neural network with attention (DBRNN-A) that learns
features from long word sequences and trained their model
with unfixed bug reports. Guo et al. [12] applied developer-
activity-based CNN techniques (CNN-DA) where they also
used Word2Vec for word embedding and applied word seg-
mentation, stop word removal and stemming techniques in
their pre-processing step. Zaidi et al. [13] applied CNN
techniques for the bug assignment problem but used three
existing word embedding, namely, Word2Vec [32], GloVe
[33] and ELMo [34] to train their dataset and compared
their performance by calculating the top-k accuracy. They
concluded that context-sensitive word embedding, ELMo
outperforms the other two. The major difference between our
model and the existing model is that we use two types of
features (repeating keywords and the contextual relationship
between adjacent words) to train our model. Moreover, we
find that many of these generalized word representations or
embedding do not work well for automated bug assignment
since these representations are not fine-tuned locally with
domain-specific bug information. As a result, we train our
model without pretrained generalized word embedding and
find that our DL model is able to outperform existing models.

III. OUR APPROACH
This section formally states the bug assignment problem,
datasets used, data preprocessing, and the proposed auto-
matic bug assignment model.

A. FORMAL PROBLEM STATEMENT
In this study, we present bug assignment as a single-
label classification problem. Let, bug reports B =
{B11, B12 . . . Bij} were previously assigned to the develop-
ers D = {D1, D2 . . . Di}. Here, bug Bij was assigned to
the developer Di, that is, Bij represents the jth bug report
of ith developer Di. In terms of classification, it can be

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

TABLE 1: Bug assignment datasets

Dataset Description #Developers #Bug Reports #Min-Max Reports MB
Sun Firefox [13] This dataset was compiled from bugs in Mozilla

Firefox’s sun theme
104 6065 10-800 0.8542

JDT [13] This dataset was compiled from Eclipse’s JDT
components’ bug reports

19 949 10-183 0.8758

Netbeans [13] This dataset was gathered from the Netbeans
editor’s bug report

108 9716 10-1294 0.8400

GUO Firefox [13] This dataset was compiled from bugs in the
GUO theme of the Mozilla Firefox web browser

159 6981 10-474 0.8957

GCC [13] This dataset was gathered from the GCC com-
piler’s bug

33 1417 10-198 0.9024

Google Chromium [11] This dataset was collected from Google
Chromium’s bugs

624 27700 10-490 0.9356

Mozilla Core [11] This dataset was collected from the Mozilla’s
Core component’s bug

610 64397 10-2241 0.8821

Mozilla Firefox [11] This dataset was collected from the bugs of
Mozilla Firefox web browser

100 136312 10-117489 0.1438

Mozilla Firefox++ A reduced version of Mozilla Firefox [11]
dataset

99 18823 10-11098 0.4109

said that Di is the label of Bij . On that note, a multi-class
classifier should be able to assign a developer Di′ ∈ D for
a new bug report Bij ′ automatically if it is trained using the
historical data B and D. Here, the classifier conjectures that
Bij ′ has textual similarities with the prior bug reports of Di′.
To validate this idea, a subset Btrain of B can be used to
train the classifier, and the rest of the bug reports Btest can
be used to measure the performance of the classifier. Here,
B = Btrain ∪ Btest. The goal of the classifier is to identify
the appropriate developers for the bugs in Btest.

B. DATASETS

To evaluate our proposed model, we conduct experiments
on eight benchmark datasets collected from open source
projects. Moreover, these datasets are experimented with in
the earlier studies [11], [13]. The Sun Firefox, JDT, Net-
beans, GUO Firefox, and GCC datasets are publicly avail-
able here [35]. The rest of the datasets are available here
[36]. Table 1 presents the summarized statistics of these
datasets, e.g., the total number of developers, bug reports,
and Min-Max bug reports per developers in a particular
dataset. These statistics are calculated after the preprocessing
step (Section III-C). Few bug reports are found empty after
preprocessing, i.e., no textual description or containing only
screenshots/hyperlinks of the bugs. Since we have not used
these bug reports to train our model, they are discarded from
Table 1. To compare our results with the existing studies [11],
[13], we consider only those developers who solved at least
ten bugs. The last column of Table 1 represents the Measure
of Balance (MB) in a particular dataset. In the real world,
datasets of bug assignment are imbalanced as bugs are as-
signed based on the availability or experience of developers.
In such scenarios, the trade-off between imbalanced datasets
and the model’s performance might be analyzed using this
MB. We utilize Shannon Entropy (SE) [37] to calculate MB
as given as follows.

MB =
SE

log k
=

−
∑k

i=1
ci
n log ci

n

log k
(1)

Here, n is the total number of bug reports, k is the total
number of unique developers, and ci is the total number of
bugs assigned to the ith developer. MB ranges between 0
and 1; 0 for an imbalanced dataset and 1 for a balanced
dataset. From Table 1, Google Chromium and GCC datasets
are almost balanced as the values of MB are 0.9356 and
0.9024, respectively. In contrast, Mozilla Firefox is near to
almost imbalance (MB is 0.1438) since a developer alone
solved 117489 bug reports. To avoid bias in the experiments,
we have created another dataset called Mozilla Firefox++
by removing the developer that has solved 117489 bugs and
the associated bug reports from the original Mozilla Firefox
dataset.

C. DATA PREPROCESSING
Since we use Natural Language Processing (NLP) techniques
to solve the bug assignment problem, it is required to pre-
process the data to achieve better performance. Besides, the
datasets contain several types of noises (e.g., hyperlinks,
newlines, and special characters) as we collect them from
open-source projects. The overall steps of our data prepro-
cessing are described below.

1) Basic Preprocessing
A bug report consists primarily of a title and a description.
It is worth noting that when the bug title is considered
alongside the bug description, the accuracy of automated
bug assignment improves [11]. As a result, we consider both
in this study. Before training the model, we clean the title
and description by converting them to lower case, removing
special characters, URLs, hex codes, new lines and extra
white spaces, removing stack traces, and truncating them.
Except for the last, these preprocessing steps are common

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

0 1000 2000 3000 4000 5000

1

Words

FIGURE 2: Distribution of words in the bug reports of Mozilla Firefox dataset

in existing works. The size of the bug reports in terms of
total words is not uniformly distributed, as shown in Fig. 2. In
comparison to the majority of reports, we find very few bug
reports that contain too many words. Among the 136312 bug
reports in the Mozilla Firefox dataset, only 339 have more
than 1000 words. To that end, we truncate bug reports that are
longer than 1000 words. Our hypothesis is that the main bug
report is described in the first 1000 words, with the remaining
words containing useless information such as error logs or the
path to reproduce the bug.

2) Tokenization

We tokenize the bug reports after performing the basic pre-
processing in order to fit them into our model. As shown in
Fig. 3, we use word-level tokenization for the deep embed-
ding layer of our bug assignment model, which converts bug
reports into space-separated sequences of words or tokens.

3) n-gram Generation

In this paper, we develop an automated bug assignment
model based on the contextual information extracted from the
linguistics patterns of a bug report (‘Title’+‘Description’).
In the fields of natural language processing and language
understanding research, n-grams are a popular method for
capturing linguistic patterns in a document [38]. We assume
that once a bug is reported and resolved by a developer,
the linguistic patterns in the bug reports will be captured
by the n-grams. Furthermore, we assume that a developer
will fix similar bugs. For example, developer X fixes secu-
rity bugs while developer Y fixes user interface (UI) bugs.
Thus, it is discovered that security-related keywords appear
frequently in X’s bug reports, whereas UI-related keywords
appear frequently in Y ’s bug reports. For this reason, we
generate overlapping n-grams from bug reports to distinguish
developers based on keywords. We use 1-gram and 2-gram
in this study since we observe them frequently. Furthermore,
higher n-grams, such as 3 or 4-grams, may not be repeated
among a developer’s bug reports.

4) TF-IDF Vectorization

After generating n-grams from a bug report, we perform
Term Frequency-Inverse Document Frequency (TF-IDF)
vectorization. It is seen that some n-grams are very frequent
in a particular developer’s bug reports while on the contrary,
few n-grams are very rare. To this end, TF-IDF vectorization

is performed in order to provide importance on the significant
n-grams.

5) Document-Term Matrix
To train a model, all training data or bug reports must be
brought into the same dimension. To accomplish this, we
generate a document-term matrix, Mbr ∈r×t. Here, the
number of training documents is represented by row r, and
the number of unique terms/n-grams across all training doc-
uments is represented by column t. If the r-th bug report
contains the t-th n-gram, then Mbr[r, t] = Stf−idf , where
Stf−idf is the TF-IDF score of t-th n-gram.

6) Dimensionality Reduction
Since t equals the number of unique n-grams across all
training documents, Mbr ∈r×t becomes a high dimensional
sparse matrix. In Mozilla Firefox, for example, the dimension
of Mbr is 136, 312 × 1.1M . The problem here is that these
1.1M unique overlapping n-grams are not distributed evenly
across the 136, 312 bug reports. As a result, a significant
number of Stf−idf in Mbr are zero, resulting in Mbr eventu-
ally becoming a sparse matrix. To avoid these minor Stf−idf

or n-grams, we intend to reduce the dimension of Mbr using
a well-known dimensionality reduction technique known as
Principle Component Analysis (PCA) [39]. When PCA is
applied to Mbr ∈r×t, it yields the lower-dimensional matrix
M ′

br ∈r×t′ . Here, t′ is less than t, and it explains the majority
of the variance in the original matrix Mbr ∈r×t. Another idea
is to train our model with the significant features rather than
all n-grams as features. Significant features in reduced space
t′ are referred to as components in the following Sections.

D. BUG ASSIGNMENT MODEL
As depicted in Fig. 3, our model takes the textual information
of a bug report as input and performs rigorous data cleaning
which is describes in Section III-C. Then, it captures repeat-
ing keywords and contextual relationship among words using
Convolutional Neural Network (CNN) and Artificial Neural
Network (ANN), respectively. After that, these two types of
features are combined in Information Fusion (IF) layer. The
IF layer is then followed by a dense and softmax layer to
assign a developer to the given bug report. The components
CNN and ANN modules, IF Layer and bug assignment are
described in detail below.

Our proposed model for bug assignment (Fig. 3) is based
on deep learning techniques. Unlike existing deep learning-

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

Dense Layer

Softmax Layer

. . . .

Bug Report

Lower Casing Remove Special
Characters

......... Remove Hex Code Remove Stack Trace

Text Preprocessing

Tokenization n-gram generation

tf-idf vectorization

Dimension Reduction (PCA)

Em
be

dd
in

g
La

ye
r

Filters

Feature Maps

Pooling

Flatten

In
fo

rm
at

io
n

Fu
si

on

A
rti

fic
ia

l N
eu

ra
l N

et
w

or
k

M
od

ul
e

C
on

vo
lu

tio
na

l N
eu

ra
l N

et
w

or
k

M
od

ul
e

....

FIGURE 3: Architecture of the proposed information fusion based deep learning model for automatic bug assignment

based bug assignment techniques that focus on a single
feature (contextual information), our technique assigns bugs
based on two types of features: repeating keywords and con-
textual relationships between words. Although a developer is
expected to solve various types of bugs, some keywords ap-
pear repeatedly in the textual descriptions of his bug reports.
Based on this insight, we intend to use repeating keywords as
features in our model.

1) CNN Module
This module aims to capture the contextual relationship
between the words in a specific bug report, which plays
an important role in uniquely identifying a developer. This
module is consisted of the following layers: Embedding
Layer, Convolutional Filter Layer, Feature Map Layer, Pool-
ing Layer, and Flatten Layer.

• Embedding Layer. To find the contextual relationship
among words, it is required to embed the words at first.
After performing tokenization (Section III-C2) on the

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

input Bij , this layer is used to transform its text into an
embedding matrix. Let, ve ∈d represents the eth word
of Bij where ve is d dimensional vector. Hence, Bij

can be represented as an embedding matrix Meb ∈n×d

by vertically arranging all the transposes of vectors that
represent the words of Bij . Here, n denotes the number
of words in a bug report, and d denotes the embedding
dimension. It is unlikely that all bug reports will contain
the same number of words. In those scenarios, padding
should be applied if a bug report does not contain n
number of words. The formal notation of Meb ∈n×d is
as follows.

Meb = vT1 ⊥ vT2 ⊥ · · · ⊥ vTn (2)

Unlike existing approaches [10], [13], weights of the
above vectors are non-static, i.e., no pretrained word
embedding such as Word2Vec [40] or GloVe [41] is
used. These weights are learned from the domain-
specific bug assignment dataset during training using
backpropagation [42].

• Convolutional Filter Layer. To capture the relation-
ship between consecutive words, convolutional filters
are used. These filters W ∈h×d are essentially applied
on the embedding matrix such as Meb. Here, h is the
number of consecutive words to be used for capturing
the relationship. It is often known as kernel or window
size. For instance, if h = 2 is used, the filter W ∈2×d

will capture the contextual relationship between two
adjacent words. When a filter W ∈h×d is applied in
a particular window, it generates a new feature sj as
mentioned in equation 3. Here, bc ∈ is a bias term, g is
a non-linear function and j is the index of the window.

sj = g(W · [ve : ve+h−1] + bc) (3)

• Feature Map Layer. If the same filters are applied to all
possible windows of a particular bug report, a feature
map F ∈n−h+1 that holds the contextual relationship
between all words can be obtained. This feature map
can be written in the format shown below. Here, fj is
the yield of jth window sj .

F = [f1, f2, . . . , fn−h+1] (4)

• Pooling Layer. Depending on the value of n, the size
of F will vary a lot. Hence, this layer is used to
pool important features from F . For instance, the max-
pooling operation can be used. Other pooling operations
are min-pooling and average pooling. If a max-pooling
operation is used, it will select maximum value f̂j from
each fj , which can be written as follows.

F̂ = [max(f1),max(f2), . . . ,max(fn−h+1)] (5)

• Flatten Layer. To increase feature coverage, different
filters such as W ′ ∈h′×d and W ′′ ∈h′′×d can be used.

In such cases, there will be multiple feature maps after
the pooling operation, such as F̂ ′ and F̂ ′′. The main
function of this layer is to aggregate these F̂ ′ and F̂ ′′.
Moreover, this layer is the ending of contextual feature
capturing. The outcome Vcnn ∈p of this layer can be
shown as follows, where p is the number of filters.

Vcnn = aggregate(F̂ ′, F̂ ′′, . . . F̂ p′) (6)

2) ANN Module
This module is responsible for capturing repeating keywords
from the bug report. It consists of two layers such as input
and hidden layers. An overview of them is given below.

• Input Layer. This layer depends on the n-grams of
Bij to extract meaningful information from repeating
keywords. An input vector vj ∈t is constructed using
TF-IDF scores of the n-grams. Here, t is the total
number of unique n-grams. In real-world bug reports,
there exists a large number of unique n-grams. They
might not repeat equally among all bug reports. This
is why, we propose to reduce the dimension of vj ∈t

and select significant repeating features only. Let, v′j ∈t′

denotes the reduced version of vj ∈t. Here, v′j is the jth
row of M ′

br ∈r×t′ .
• Hidden Layer. The main objective of this layer is to

assign different weights to each element of vj ∈t′ . We
propose to use different weights as all the elements of
vj may not play an equal role in uniquely identifying a
developer. When such weight vector W ∈ t′ is assigned
to vj , it generates a new vector Vann which can be
expressed as follows. Here, ba ∈ is the bias, and F is
a non-linear function.

Vann = F(W · vj + ba) (7)

3) Information Fusion Layer and Bug Assignment
After obtaining contextual relationship (Vcnn) and repeating
keywords (Vann) from CNN and ANN modules, this layer
fuses these features to perform better bug assignment. Since
we have used two different types of features here, we call this
layer the Information Fusion (IF) layer. The outcome of this
layer Vif ∈p+t′ can be denoted as follows. Here, ⊕ is the
concatenation operator.

Vif = Vcnn ⊕ Vann (8)

After fusing these features, Vif ∈p+t′ is sent to a non-
linear dense layer which assigns different weights to each
element of Vif . Since Vif contains different types of fea-
tures, all features may not contribute equally to assigning
the bug reports. Thus, we assign different weights to each
element of Vif . Finally, we use an output layer to transform
the hidden layer’s outcomes into probabilities. This layer
assigns different probabilities to each developer. However,
the original developer gets the highest score. Based on this
probability score, a bug report is assigned to a developer. For

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

instance, a bug report Bij is passed to our model, which is
the jth bug report of ith developer Di. The model assigns the
highest probability score to developer Di compared to other
developers.

IV. EXPERIMENTS
In this section, we discuss our experiments in detail, such as
benchmark models and their training and evaluation. More-
over, we answer the following key research questions (RQ#)
to evaluate the performance of the proposed automatic bug
assignment model.

RQ1: Can TF-IDF vectorization of a bug report and an artifi-
cial neural network (ANN) model effectively automate
the bug assignment?

RQ2: Can a convolutional neural network (CNN) model with
non-static embedding effectively automate the bug as-
signment?

RQ3: Can we develop an effective bug assignment model
by fusing both artificial and convolutional neural net-
works’ features?

A. BENCHMARK MODELS
As stated earlier that our proposed model consists of two
modules: Artificial Neural Network (ANN) and Convolu-
tional Neural Network (CNN). However, we perform an
ablation [43] study to justify whether it is possible to achieve
the same performance by removing any of these modules.
For this reason, we create the following combination of
benchmark models from our proposed bug assignment model
(Fig. 3).

• ANN + CNN2 + CNN3: This model consists of a single
ANN layer and two CNN layers having different filters.
For instance, CNN2 and CNN3 capture the contextual
relationship between 2 and 3 words. Then, we use
max-pooling to extract the significant and meaningful
features from CNN layers. The rest of behaviors are
the same as described in Section III-D. The target of
this model is to observe the performance of Information
Fusion (IF).

• ANN + CNN2: This model aims to observe the perfor-
mance of IF. However, it has fewer filters than the above
benchmark model. It is developed by removing CNN3
from the above ANN + CNN2 + CNN3 model.

• ANN: In this model, there is no information fusion, i.e.,
it only learns from repeating keywords. This benchmark
model is developed by removing CNN2 and CNN3 from
ANN + CNN2 + CNN3. This model aims to assign bugs
without IF. This model takes repeating keywords (TF-
IDF vectors) as input and assigns weights to the input in
its dense layer. Finally, a softmax layer assigns the bug
reports.

• CNN2 + CNN3: This model learns from the contextual
relationship of consecutive words. Again, for instance,
CNN2 and CNN3 capture contextual relationships be-
tween 2 and 3-words, respectively. Then, the most
important features are selected using the max-pooling

operation. The outcome of the pooling operation is
processed via a dense and softmax layer to assign bug
reports. This model is developed by removing ANN
from ANN + CNN2 + CNN3.

• CNN2 and CNN3, individually: As CNN2 + CNN3
uses the contextual relationship between both 2 and 3-
words, we develop further two individual models such
as CNN2 and CNN3. These models aim to find whether
it is 2 or 3 consecutive words that should be the choice
for CNN layers.

Our benchmark models can be grouped into two categories
such as independent models (ANN, CNN2, CNN3, and
CNN2 + CNN3) and fusion-based models (ANN + CNN2
+ CNN3 and ANN + CNN2). Apart from these benchmark
models, we train traditional ML models such as SVM [44],
RF [45] and NB [46] to compare our DL models’ results
against them. To train these models, we use tf-idf vectors
(reduced using PCA) as features. In other words, our ANN
and ML models are trained using the same set of features. We
consider these models because we find that they were widely
used in existing studies for solving the bug assignment prob-
lem [1], [9], [25].

Lastly, we compare our results against some existing
benchmark models such as ELMo-CNN [13], ELM [45],
CNN-DA [12], and DBRNN-A [11]. ELMo-CNN is a DL-
based technique that uses a convolutional neural network
with a pre-trained word embedding named ELMo to assign
bugs. It achieved the best Top-1 accuracy in Sun Firefox,
JDT, and GUO Firefox datasets. In the GCC dataset, the
extreme learning machine (ELM) achieved the best Top-1
accuracy. In other datasets, DBRNN-A, an attention-based
deep bidirectional recurrent neural network achieved the best
Top-10 accuracy.

B. MODEL TRAINING AND EVALUATION
To train and evaluate our benchmark models, we apply 10-
Fold cross-validation followed in the existing studies [11],
[13]. In each fold, the performance of a particular model is
measured using Top-1 to Top-10 accuracies so that we can
compare our results with earlier works of bug assignment
[11], [13]. Top-1 to Top-10 accuracy is a well-known metric
in recommender systems. Automated bug assignment and
recommender systems are pretty comparable. Using Top-
1 to Top-10 accuracies for bug assignment makes sense
in the following ways. Assume that our model uses Top-1
accuracy, in which case it recommends a specific developer
for a given bug report. The developer in question, though,
might be preoccupied with other projects. In this case, top-k
recommended developers may be a good option. To train all
of our benchmark models, we use a variety of settings, which
are summarized below.

1) Settings of Independent Models
To train the ANN model, training documents/bug reports
are initially transformed into M ′

br ∈r×t′ . Here, r is the
total number of training documents. The value of number

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

282(0.5) 371(0.6) 467(0.7) 570(0.8) 816(0.99)
Number of components (variance)

45

50

55

60

65

70

75

80

85

Sc
or

e

Top-1
Top-2

Top-3
Top-4

Top-5

FIGURE 4: JDT Dataset: Effect of the number of compo-
nents (variance %) on ANN based model’s performance such
as Top-1, Top-2, Top-3, Top-4 & Top-5 accuracy

of components t′ needs to be chosen carefully because it
has major impact on the model’s performance. During the
training of this model, we try different values of t′ to find
optimum performance. Fig. 4 depicts different values of t′

and their corresponding Top-1 to Top-5 accuracies in JDT
dataset. It can be observed from Fig. 4 that same value of t
does not provide optimum scores for all accuracies (Top-1 to
Top-5). For instance, the optimum score of Top-1 accuracy
can be obtained using 467 components whereas it is required
to use 816 components for Top-2 accuracy. Here, 467 & 816
components explains 70% & 99% variance of the original
data. Thus, it is also difficult to choose the value of t′ based
on the variance explained. For these reasons, we tune the
value of t′ to train our ANN model until we obtain optimum
scores for all accuracies (Top-1 to Top-10).

In CNN2 & CNN3 training, 300 embedding dimension is
used, i.e., each word is represented using a 300-dimensional
vector. Moreover, we use 256 filters of kernel sizes 2 × 300
and 3×300, respectively. We train our CNN2 + CNN3 model
by combining the settings of CNN2 and CNN3. We also
try more than 256 filters, however, it does not improve the
performance of these models. In an existing study [13], Zaidi
et al. also used the same number of filters to train their CNN-
based bug assignment model.

2) Settings of Fusion-Based Models
To train ANN + CNN2, we borrow the setting of ANN and
CNN2 since we achieved the optimum performance for those
individual settings. Similarly, the parameter settings of ANN
and CNN2 + CNN3 are used to train ANN + CNN2 + CNN3.

3) Common Settings
Apart from these settings, we use the same batch size,
number of epochs, loss function and optimizer to train all
the benchmark models. We find optimum performance of
these models using 32 batch size and setting the required
epochs to 4. It is needed to mention that we also try higher
batch size (64) and epochs (10). However, it did not help
to achieve better performance, i.e., validation accuracy (Fig.

5d) starts decreasing if more than 4 epochs are used. To
optimise the loss of any multi-class classifier, the use of
categorical_crossentropy [47] is seen to be very common
among deep learning-based classifier. However, we use state-
of-the-art focal loss [48] during model trainings to gain per-
formance over imbalance datasets. Fig. 5 shows comparison
between categorical_crossentropy and focal loss. From this
figure, it is evident that the optimization of focal loss is
better than categorical_crossentropy. For instance, focal loss
minimizes the total losses significantly during training and
validation compared to categorical_crossentropy (Fig. 5a and
Fig. 5c). On the other hand, focal loss maximizes the training
and validation accuracies (Fig. 5b and Fig. 5d). Although
Fig. 5 shows the training history of our ANN + CNN2 +
CNN3 model over Mozilla Firefox only, we also observe
same patterns for all benchmark models in the rest of the
datasets. In Convolutional Filter and Hidden Layers, we use a
commonly used activation function such as Corrected Linear
Units (ReLU) [49]. Lastly, we use the softmax function in
output layer as bug assignment is multi-class classification
problem.

4) Environment
We conduct experiments in a Windows 10 operating sys-
tem equipped with 12 core 3.80 GHz processor, 64 GB
RAM, and 8 GB VRAM. We implement the Deep learn-
ing (DL) models using Keras (https://keras.iohttps://keras.io)
framework. The traditional machine learning (ML) mod-
els are implemented using the scikit-learn (https://scikit-
learn.orghttps://scikit-learn.org) library.

V. RESULT AND DISCUSSION
Table 2 displays the experimental results we obtain using
our deep learning-based benchmark models. Table 3 shows
the results obtained by applying traditional ML models. In
addition to these results, we present a comparative study be-
tween our benchmark models, existing deep learning-based
models, and traditional ML models in Table 4 and Table
5, respectively. The last columns of Table 4 and Table 5
represent the average improvements our benchmark models
achieve compared to existing deep learning and ML-based
models. Lastly, we answer the following RQs by analyzing
the above results.

A. ANSWERS TO THE RQS
1) RQ1
Can TF-IDF vectorization of a bug report and an artificial
neural network (ANN) model effectively automate the bug
assignment? Although previsous researchers used TF-IDF
for feature extraction [29], [44]–[46], [46], none of the ex-
isting works has explored ANN for bug assignment. To our
best knowledge, this is the first study that uses significant
repeating keywords (TF-IDF vectors after PCA) to assign
bugs using an ANN. Our experimental results demonstrate
that ANN performs better than traditional ML models. Top-K
accuracies of ANN and traditional ML models are displayed

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

2 4 6 8 10
Epoch

0.0

0.1

0.2

0.3

0.4

Tr
ai

ni
ng

 L
os

s

focal
categorical_crossentropy

(a) Loss on training

2 4 6 8 10
Epoch

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

Ta
in

in
g

To
p-

10
 A

cc
ur

ac
y

focal
categorical_crossentropy

(b) Top-10 accuracy on training

2 4 6 8 10
Epoch

0.1

0.2

0.3

0.4

0.5

Va
lid

at
io

n
Lo

ss

focal
categorical_crossentropy

(c) Loss on validation

2 4 6 8 10
Epoch

0.9885

0.9890

0.9895

0.9900

0.9905

0.9910

0.9915

0.9920

0.9925

Va
lid

at
io

n
To

p-
10

 A
cc

ur
ac

y

focal
categorical_crossentropy

(d) Top-10 accuracy on validation

FIGURE 5: History of ANN + CNN2 + CNN3 model training over Mozilla Firefox dataset using focal & categori-
cal_crossentropy loss (a) Comparison of total losses during training (b) Comparison of Top-10 accuracies during training
(c) Comparison of total losses during validation (d) Comparison of Top-10 accuracies during validation

in Table 2 and Table 3, respectively. Most importantly, ANN
outperforms existing deep learning-based benchmark models
such as ELMo-CNN [13], CNN-DA [12], DBRNN-A [11] in
JDT, GUO Firefox, Google Choromium, Mozilla Core and
Mozilla Firefox datasets. The last column of Table 4 shows
the average improvement of ANN-based model compared
to these existing benchmark models. Moreover, ANN based
model shows comparable performance with the fusion-based
models such as ANN + CNN2 and ANN + CNN2 + CNN3.
Table 2 displays the results of ANN, ANN + CNN2 and ANN
+ CNN2 + CNN3 in all datasets. From these observations, it
is evident that the idea of TF-IDF vectorization and ANN to
assign bugs is non-negligible. Therefore, we conclude that
ANN-based model can be an effective way to automate bug
assignment.

2) RQ2

Can a convolutional neural network (CNN) model with non-
static embedding effectively automate the bug assignment?
Based on the experimental results in Table 2, CNN-based
models (CNN2, CNN3, CNN2+CNN3) that use contextual
relationship among adjacent words does not perform well
compared to our other benchmark models such as ANN,
ANN + CNN2, and ANN + CNN2 + CNN3. However, our

CNN-based models with non-static word embedding outper-
form existing CNN-based benchmark models that use pre-
trained word embedding. For example, ELMo-CNN achieved
the best Top-1 accuracy in Sun Firefox (31.01%), Netbeans
(40.17%), and GUO Firefox (16.73%) according to Zaidi et
al. [13]. On the contrary, our CNN-based models achieve
34.74% (CNN2 + CNN3), 54.17% (CNN2 + CNN3) and
30.23% (CNN2) Top-1 accuracy, respectively. These results
are also better than the other CNN-based models of Zaidi et
al. [13], such as Word2Vec-CNN and GloVe-CNN. Our ma-
jor finding from this RQ is that non-static embedding layers
perform better than other pre-trained embedding layers.

3) RQ3

Can we develop an effective bug assignment model by fusing
both artificial and convolutional neural networks’ features?
To answer this RQ, we compare our fusion-based models
(ANN + CNN2 and ANN + CNN2 + CNN3) with our
other benchmark models (ANN, CNN2, CNN3, and CNN2
+ CNN3) and existing deep learning-based benchmark mod-
els (ELMo-CNN, CNN-DA, and DBRNN-A). As shown in
Table 4 and Table 5, our fusion-based models outperform
our other benchmark models and traditional ML models in
Sun Firefox, Netbeans, and GCC datasets. In other datasets,

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

TABLE 2: Average Top-1 (%) to Top-10 (%) accuracies of our models in all datasets

Dataset Model Top-1 Top-2 Top-3 Top-4 Top-5 Top-6 Top-7 Top-8 Top-9 Top-10

Sun Firefox

ANN+CNN2+CNN3 36.56 48.29 55.54 60.46 64.15 67.40 69.71 71.77 73.62 75.17
ANN+CNN2 36.41 47.71 55.08 60.34 64.25 67.33 69.96 72.28 74.13 75.73
ANN 34.92 48.19 56.88 63.25 66.83 70.09 72.64 74.91 76.75 78.51
CNN2+CNN3 34.74 46.67 53.49 58.66 62.72 65.95 68.43 70.86 73.03 74.56
CNN3 31.64 43.05 50.17 55.45 59.39 62.77 65.57 67.85 69.68 71.64
CNN2 33.62 45.94 53.85 58.83 63.09 66.12 68.64 70.77 73.04 74.84

JDT

ANN+CNN2+CNN3 45.75 61.02 69.45 75.88 80.19 82.62 85.88 88.41 90.2 91.89
ANN+CNN2 42.88 59.64 66.92 73.03 77.35 80.52 83.46 85.88 88.83 90.20
ANN 47.53 62.71 72.08 77.98 82.62 86.09 89.15 90.93 92.31 93.36
CNN2+CNN3 42.68 59.75 69.44 77.25 80.83 83.98 86.31 88.52 91.57 92.84
CNN3 39.62 54.69 66.59 74.51 79.25 84.51 87.15 88.52 89.99 91.78
CNN2 40.15 58.17 68.28 75.34 80.40 83.88 86.93 88.62 90.83 92.52

Netbeans

ANN+CNN2+CNN3 57.77 70.16 75.89 79.26 81.83 83.64 85.21 86.41 87.71 88.45
ANN+CNN2 57.20 69.80 76.30 79.69 82.24 84.16 85.63 86.72 87.89 88.69
ANN 51.59 64.56 71.71 75.88 78.73 81.17 82.96 84.29 85.62 86.61
CNN2+CNN3 54.17 66.78 73.54 77.67 80.40 82.23 83.76 85.19 86.46 87.63
CNN3 52.46 64.98 71.22 75.35 78.18 80.17 81.78 83.24 84.48 85.47
CNN2 53.68 66.34 72.49 76.54 79.09 81.22 83.11 84.61 85.70 86.67

GUO Firefox

ANN+CNN2+CNN3 33.33 46.09 52.92 57.72 61.53 64.57 67.05 69.23 70.89 72.48
ANN+CNN2 33.36 46.43 54.19 58.95 62.79 65.43 68.01 70.08 71.97 73.52
ANN 33.50 46.38 53.81 58.91 62.81 65.66 68.22 70.39 71.99 73.14
CNN2+CNN3 30.00 42.24 49.59 54.73 58.85 61.75 64.44 66.76 68.75 70.49
CNN3 28.31 39.74 46.89 52.37 55.96 58.85 61.63 64.17 65.89 67.51
CNN2 30.23 42.84 50.41 55.77 59.45 62.39 65.02 67.34 69.33 70.83

GCC

ANN+CNN2+CNN3 49.89 61.74 69.02 73.53 77.77 80.73 82.71 84.54 85.95 87.43
ANN+CNN2 53.63 63.87 70.22 74.59 77.49 80.10 82.15 83.91 85.47 86.74
ANN 44.03 51.72 57.02 60.55 63.16 66.05 68.31 70.14 72.61 75.01
CNN2+CNN3 47.71 60.05 67.61 72.27 76.43 79.33 81.44 83.27 84.69 86.73
CNN3 46.58 58.43 65.91 70.36 74.09 77.13 79.32 81.58 83.98 85.67
CNN2 50.03 62.67 68.18 73.12 76.51 79.19 82.08 83.69 85.11 86.52

Google Choromium

ANN+CNN2+CNN3 16.75 25.08 30.7 35.06 38.56 41.43 43.89 46.13 48.05 49.71
ANN+CNN2 20.07 28.74 34.29 38.81 41.92 44.45 46.49 48.38 49.99 51.48
ANN 21.33 31.36 37.89 42.62 46.36 49.38 52.03 54.24 56.18 57.80
CNN2+CNN3 14.88 22.88 28.35 32.22 35.58 38.28 40.61 42.62 44.46 46.15
CNN3 14.38 22.03 27.19 31.29 34.49 37.19 39.42 41.38 43.19 44.87
CNN2 15.85 23.72 29.03 33.20 36.58 39.21 41.66 43.69 45.53 47.05

Mozilla Core

ANN+CNN2+CNN3 20.68 30.19 36.44 41.20 44.9 47.98 50.60 52.68 54.51 56.24
ANN+CNN2 22.48 32.59 39.05 43.76 47.55 50.54 53.06 55.26 57.16 58.89
ANN 25.73 36.41 43.27 48.29 52.17 55.29 57.82 60.07 62.13 63.84
CNN2+CNN3 18.79 28.12 34.25 38.83 42.42 45.28 47.72 49.89 51.83 53.49
CNN3 18.48 27.85 33.93 38.54 42.02 45.05 47.65 49.81 51.75 53.44
CNN2 19.69 29.14 35.37 39.93 43.72 46.61 49.19 51.28 53.18 54.83

Mozilla Firefox

ANN+CNN2+CNN3 89.03 94.96 97.27 97.75 97.98 98.16 98.29 98.39 98.47 98.53
ANN+CNN2 88.82 94.89 97.18 97.71 98.00 98.21 98.35 98.43 98.48 98.51
ANN 90.13 95.96 97.88 98.45 98.74 98.93 99.01 99.12 99.18 99.24
CNN2+CNN3 88.56 94.71 97.07 97.65 97.94 98.15 98.28 98.41 98.49 98.54
CNN3 87.51 94.56 97.17 97.65 97.94 98.16 98.31 98.39 98.47 98.54
CNN2 88.80 95.03 97.39 97.78 98.09 98.22 98.39 98.49 98.53 98.55

Mozilla Firefox++

ANN+CNN2+CNN3 66.10 83.25 87.67 89.52 90.94 91.80 92.51 93.04 93.40 93.73
ANN+CNN2 67.45 83.59 87.76 89.63 90.86 91.82 92.49 93.02 93.42 93.69
ANN 69.21 84.54 88.73 90.71 92.06 92.76 93.36 93.93 94.35 94.72
CNN2+CNN3 66.36 82.72 87.25 89.31 90.70 91.42 92.04 92.63 93.08 93.35
CNN3 63.69 82.10 86.66 88.64 89.84 90.66 91.31 91.86 92.29 92.63
CNN2 65.81 82.47 87.00 89.09 90.20 90.97 91.59 92.03 92.45 92.85

the performance of fusion-based models is comparable with
our other benchmark models which are shown in Table
2. However, fusion-based models significantly outperform
existing deep learning-based models almost in all datasets.
According to Zaidi et al. [13], ELMo-CNN and ELM are the
best performing models in Sun Firefox, JDT, Netbeans, GUO
Firefox and GCC datasets which are displayed in the 3rd
column of Table 4. From Table 2, it can be observed that the
performance of ELMo-CNN and ELM is beatable by ANN
+ CNN2 and/or ANN + CNN2 + CNN3. According to Mani
et al. [11], DBRNN-A is the best performing model in terms

of Top-10 accuracy in Google Chromium (41.80%), Mozilla
Core (36.10%) and Mozilla Firefox (44.80%) datasets. In
contrast, our fusion-based models achieve better Top-10 ac-
curacies in these datasets, i.e., 51.48% (ANN + CNN2),
58.89% (ANN + CNN2) and 98.53% (ANN + CNN2 +
CNN3), respectively. Lastly, the main finding from this RQ
is that the performance of fusion-based deep learning models
is more promising than other models that do not fuse infor-
mation to assign bug reports.

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

TABLE 3: Average Top-1 (%) to Top-10 (%) accuracies of traditional ML models in all datasets

Dataset Model Top-1 Top-2 Top-3 Top-4 Top-5 Top-6 Top-7 (%) Top-8 Top-9 Top-10

Sun Firefox
SVM 34.26 48.36 57.32 64.12 68.37 72.02 74.62 76.75 78.43 79.78
RF 28.96 39.25 48.13 53.54 57.05 60.18 63.00 65.18 67.02 68.52
NB 11.34 17.43 22.75 28.33 34.41 39.11 43.61 47.58 51.67 54.62

JDT
SVM 45.83 62.60 73.24 78.92 83.35 86.73 89.36 90.94 92.52 93.57
RF 34.35 52.16 62.38 68.81 75.03 79.03 82.93 85.56 88.41 90.62
NB 4.85 54.40 70.29 84.52 89.78 93.36 94.84 96.63 97.58 98.63

Netbeans
SVM 48.96 62.36 69.42 73.71 76.80 79.29 81.40 83.18 84.73 85.99
RF 38.40 48.44 54.79 60.39 64.42 67.84 70.34 72.81 74.77 76.50
NB 18.45 25.83 30.58 35.29 39.54 43.54 47.10 50.15 52.90 55.37

GUO Firefox
SVM 32.27 44.69 52.15 57.26 61.31 64.33 66.72 69.11 71.39 72.86
RF 27.18 35.51 41.64 46.06 49.89 52.74 55.43 57.64 59.71 61.88
NB 14.56 21.38 25.79 29.36 32.64 35.76 39.46 42.61 45.32 47.45

GCC
SVM 53.42 64.71 71.98 76.29 79.88 82.85 85.74 87.79 89.06 90.61
RF 40.51 48.48 54.62 59.07 63.51 67.68 70.85 73.74 76.49 78.96
NB 3.31 85.81 86.87 87.29 87.72 88.07 88.21 88.35 88.99 89.55

Google Choromium
SVM 17.83 27.29 32.45 35.88 38.95 41.76 44.07 46.78 48.48 50.00
RF 16.24 21.98 26.17 29.21 32.16 33.97 35.77 37.51 38.88 40.51
NB 14.87 24.80 30.54 35.27 38.48 40.79 42.74 44.69 46.67 48.19

Mozilla Core
SVM 22.25 32.88 39.31 44.06 47.87 50.52 53.19 55.63 57.50 59.37
RF 14.08 21.45 26.45 30.41 33.35 35.76 38.15 40.01 41.97 43.63
NB 13.11 22.34 27.84 31.75 35.06 37.29 39.75 41.42 43.24 44.79

Mozilla Firefox
SVM 89.49 95.49 97.49 98.17 98.48 98.67 98.84 98.92 99.02 99.17
RF 87.78 94.75 97.23 97.93 98.34 98.55 98.72 98.91 99.06 99.23
NB 48.45 69.17 80.56 85.97 88.78 90.44 91.47 92.19 92.79 93.33

Mozilla Firefox++
SVM 69.34 83.92 88.24 90.20 91.52 92.41 93.07 93.59 94.07 94.41
RF 61.52 78.67 83.25 86.11 87.93 88.84 89.45 89.94 90.33 90.73
NB 35.18 55.35 67.15 74.38 78.63 81.46 83.38 84.88 86.12 87.13

TABLE 4: Performance comparison between our DL/ML models and existing DL models in all datasets

Dataset Our Best DL/ML Model Existing DL Model Improvement In DL
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

Sun Firefox 36.56 (ANN+CNN2+CNN3) 66.83 (ANN) 75.73 (ANN) 31.01 (ELMo-CNN) 57.96 (ELMo-CNN) 67.9 (ELMo-CNN) 17.900 15.30 11.530
JDT 47.53 (ANN) 82.62 (ANN) 93.36 (ANN) 49.75 (ELMo-CNN) 78.26 (ELMo-CNN) 87.23 (ELMo-CNN) 00.000 05.57 07.030
Netbeans 57.77 (ANN+CNN2+CNN3) 82.24 (ANN+CNN2) 88.69 (ANN+CNN2) 40.17 (ELMo-CNN) 66.07 (ELMo-CNN) 74.89 (CNN-DA) 43.810 24.47 18.430
GUO Firefox 33.50 (ANN) 62.81 (ANN) 73.52 (ANN+CNN2) 16.73 (ELMo-CNN) 36.47 (ELMo-CNN) 45.40 (ELMo-CNN) 100.24 72.22 61.940
GCC 53.63 (ANN+CNN2) 77.77 (ANN+CNN2+CNN3) 87.43 (ANN+CNN2+CNN3) 63.30 (ELM) 74.02 (ELMo-CNN) 83.20 (ELMo-CNN) 00.000 05.07 05.080
Google Choromium 21.33 (ANN) 46.36 (ANN) 57.8 (ANN) 41.80 (DBRNN-A) 38.280
Mozilla Core 25.73 (ANN) 52.17 (ANN) 63.84 (ANN) 36.10 (DBRNN-A) 76.840
Mozilla Firefox 90.13 (ANN) 98.74 (ANN) 99.24 (ANN) 44.80 (DBRNN-A) 121.51
Mozilla Firefox++ 69.21 (ANN) 92.76 (ANN) 94.72 (ANN)

TABLE 5: Performance comparison between our DL/ML models and traditional ML models in all datasets

Dataset Our Best DL/ML Model Traditional Best ML Model Improvement In ML
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

Sun Firefox 36.56 (ANN+CNN2+CNN3) 66.83 (ANN) 75.73 (ANN) 34.26 (SVM) 68.37 (SVM) 79.78 (SVM) 06.71 00.00 00.00
JDT 47.53 (ANN) 82.62 (ANN) 93.36 (ANN) 45.83 (SVM) 83.35 (SVM) 93.57 (SVM) 03.71 00.00 00.00
Netbeans 57.77 (ANN+CNN2+CNN3) 82.24 (ANN+CNN2) 88.69 (ANN+CNN2) 48.96 (SVM) 76.8 (SVM) 85.99 (SVM) 17.99 07.08 03.14
GUO Firefox 33.50 (ANN) 62.81 (ANN) 73.52 (ANN+CNN2) 32.27 (SVM) 61.31 (SVM) 72.86 (SVM) 03.81 02.45 00.91
GCC 53.63 (ANN+CNN2) 77.77 (ANN+CNN2+CNN3) 87.43 (ANN+CNN2+CNN3) 53.42 (SVM) 79.88 (SVM) 90.61 (SVM) 00.39 00.00 00.00
Google Choromium 21.33 (ANN) 46.36 (ANN) 57.8 (ANN) 17.83 (SVM) 38.95 (SVM) 50.00 (SVM) 19.63 19.02 15.60
Mozilla Core 25.73 (ANN) 52.17 (ANN) 63.84 (ANN) 22.25 (SVM) 47.87 (SVM) 59.37 (SVM) 15.64 08.98 07.53
Mozilla Firefox 90.13 (ANN) 98.74 (ANN) 99.24 (ANN) 89.49 (SVM) 98.48 (SVM) 99.77 (SVM) 00.71 00.26 00.00
Mozilla Firefox++ 69.21 (ANN) 92.76 (ANN) 94.72 (ANN) 69.34 (SVM) 91.52 (SVM) 94.41 (SVM) 00.00 01.35 00.33

B. DEEP ERROR DEBUGGING AND FUTURE
DIRECTION

As our fusion-based models (ANN + CNN2 and ANN +
CNN2 + CNN3) performed better compared to the existing
deep learning-based models (ELMo-CNN and DBRNN-A)
over all datasets, we debug the errors of one of these models
(ANN + CNN2) to improve their performance further. To this
end, we observe Top-1 accuracy and note the incorrect bug
assignments during 1 to 10 folds. Then, we analyze these
data and find a coinciding behavior among these incorrect
bug assignments. For instance, ANN + CNN2 predicted 12
times developer D3’s bugs as D11’s and 18 times D11’s
bugs as D3’s. So, the total number of coinciding incorrect
bug assignments between D3 and D11 equals 30 times. Fig.

6a displays the total number of coinciding incorrect bug
assignments among all developers in the JDT dataset. In
this dataset, the top most coinciding developers in terms of
our model’s incorrect assignments are {D8, D16} = 46,
{D8, D11} = 31, {D3, D11} = 30 and {D8, D14} = 27. To
understand the causes of coinciding incorrect assignment, we
measure the similarities among developers in terms of their
historical bug reports. Let Bp be the profile of pth developer
Dp that contains all historical bug reports of Dp. Here, we
formulate Bp as follows, where bpj denotes the jth bug report
of pth developer.

Bp = bp1 ⊕ bp2 ⊕ · · · ⊕ bpj (9)

To find the similarities among developers, we transform

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

0 1 2 2 0 0 1 0 0 0 6 0 0 1 0 6 0 0 0

1 0 10 9 1 10 1 0 0 1 18 3 0 0 0 0 1 0 0

2 10 0 15 0 17 4 9 3 0 30 17 0 6 0 2 0 0 0

2 9 15 0 0 4 0 6 8 0 18 5 3 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0

1 10 17 4 4 0 4 15 1 0 8 4 0 0 0 0 12 0 0

0 0 4 1 0 4 0 1 0 0 1 0 0 0 0 0 0 0 0

1 0 9 6 0 15 0 0 0 0 31 8 4 27 0 46 0 0 4

0 1 0 8 0 0 0 0 0 0 3 2 2 1 0 1 0 0 0

0 0 1 3 0 0 1 0 0 0 5 1 0 3 0 0 0 0 0

6 18 30 18 0 8 0 31 0 5 0 19 0 17 0 10 0 0 2

1 3 17 5 0 4 3 8 2 0 19 0 1 4 1 6 0 0 0

1 0 0 3 0 0 0 4 2 1 1 0 0 1 0 1 1 0 0

0 0 6 0 0 0 0 27 0 3 17 0 0 0 0 7 0 0 5

0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

6 0 2 1 0 1 0 46 0 1 10 6 0 7 0 0 0 0 0

0 0 1 1 0 12 0 0 1 0 3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0

1 0 0 2 0 1 1 4 0 0 2 3 0 5 0 1 0 0 0

20

40

60

80

100

(a) Coinciding incorrect bug report assignment
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

100 13 13 14 9 17 12 15 12 4 18 14 11 21 9 16 11 6 16

13 100 71 71 45 63 48 68 47 40 76 72 44 64 28 60 34 48 55

13 71 100 67 50 66 52 83 44 53 76 83 45 73 27 69 33 57 62

14 71 67 100 43 63 46 66 49 36 72 68 46 63 30 60 35 44 54

9 45 50 43 100 46 33 48 30 29 49 50 30 45 20 42 24 33 39

17 63 66 63 46 100 47 71 50 30 74 65 51 64 41 67 52 37 62

12 48 52 46 33 47 100 52 33 30 52 52 33 49 21 46 25 34 42

15 68 83 66 48 71 52 100 43 53 75 83 48 76 30 79 37 55 68

12 47 44 49 30 50 33 43 100 16 57 42 38 46 29 44 31 24 42

4 40 53 36 29 30 30 53 16 100 38 53 21 43 7 38 10 41 37

18 76 76 72 49 74 52 75 57 38 100 76 53 74 38 69 43 45 66

14 72 83 68 50 65 52 83 42 53 76 100 45 73 27 69 32 57 62

11 44 45 46 30 51 33 48 38 21 53 45 100 46 28 46 32 26 43

21 64 73 63 45 64 49 76 46 43 74 73 46 100 31 67 35 46 63

9 28 27 30 20 41 21 30 29 7 38 27 28 31 100 34 27 12 33

16 60 69 60 42 67 46 79 44 38 69 69 46 67 34 100 38 43 63

11 34 33 35 24 52 25 37 31 10 43 32 32 35 27 38 100 14 36

6 48 57 44 33 37 34 55 24 41 45 57 26 46 12 43 14 100 36

16 55 62 54 39 62 42 68 42 37 66 62 43 63 33 63 36 36 100

20

40

60

80

100

(b) Similarity (%) between developers’ bug reports

FIGURE 6: Overview of deep error debugging over the JDT dataset. (a) Coinciding incorrect bug report assignments among
developers. Here, each cell represents the total number of coinciding times between two developers; (b) Similarity between
developers’ in terms of their historical bug reports. Here, each cell represents the similarity between two developers

the developers’ profiles into vector spaces. Initially, we gen-
erate unique 1 and 2 grams from Bg where we express Bg

formally as follows.

Bg = B1 ⊕B2 ⊕ · · · ⊕Bp (10)

Concerning the unique n-grams of Bg , we generate a
TF-IDF vector for each developer’s profile. Then, we ob-
tain a developer-term matrix MDT ∈p×t by stacking all
developers’ TF-IDF vectors. Here, p and t denote the total
developers and unique terms/n-grams, respectively. To keep
in accordance with model training and validation, we apply
PCA on MDT ∈p×t and obtain M ′

DT ∈p×t′ . The pth row of
M ′

DT ∈p×t′ represents the pth developer’s profile, denoted
by Dv

p , in a vector space. Now, we can measure similarities
among developers’ profiles using Cosine Similarities. For-
mula 11 denotes the similarities between developer Dp and
Dp′ .

cos_sim(Dp, Dp′) =
Dv

p ·Dv
p′

∥Dv
p∥∥Dv

p′∥
(11)

Following the above steps, we measure similarities among
different developer profiles of the JDT dataset which is
demonstrated in Fig. 6b. From the same cell of Fig. 6a and
Fig. 6b, we can find that highly similar developer profiles
tend to cause a higher number of coinciding incorrect bug
assignments by our model. For instance, the similarities
between top most coinciding developers ({D8, D16} = 46,
{D8, D11} = 31, {D3, D11} = 30 and {D8, D14} = 27)
are 79%, 75%, 76%, and 76%. To verify whether this pattern
exists for all developers, we measure the correlation between
their profile’s similarity (Fig. 6b) and the total number of
coinciding incorrect bug assignments (Fig. 6a). From Fig. 7
that depicts the correlation between Fig. 6a and Fig. 6b, we

10 20 30 40 50 60 70 80
Similarity (%)

0

10

20

30

40

No
. o

f t
im

es
 c

oi
nc

id
ed

Correlation Coefficient = 0.56
P-value = 2.1 × 10 13

FIGURE 7: Correlation between bug report similarities and
the coinciding incorrect assignments between two developers
- the correlation coefficient score 0.56 indicates moderate
positive correlation

can observe that the similarity and the coinciding incorrect
assignments exhibit a moderate positive correlation (0.56).
This correlation is also statistically significant since the ob-
tained P-value (2.1×10−13) is very small even if we consider
the lowest significance level, i.e., α = 0.001. We also observe
similar patterns while debugging the errors in other datasets.
In the future, we aim to deal with the similarity issues among
developers for making our model more accurate.

C. THREATS TO VALIDITY

1) External Validity

We make our claims based on the findings from running
experiments on the dataset of eight real-world open-sourced
projects, which may not represent the characteristics of in-

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

dustrial, proprietary, and closed-sourced projects. In such
cases, our approach may render different results. It is note-
worthy that bug reports for proprietary industrial projects are
not publicly available. Therefore, it is challenging to conduct
experiments for any verification or validation purposes. How-
ever, since we take our benchmark dataset from a variety of
open-source software, the severity of this external threat is
relatively low.

Since our approach depends on the availability of bug
assignment history, it cannot be readily applied to a new
project or when a new developer joins a team. One possible
remedy for the latter problem can be to match the skill sets of
a new developer with an existing developer with a bug-fixing
history [50].

2) Internal Validity
Our data preprocessing is somewhat different than other
existing deep learning-based techniques. As a result, compar-
ing results from our and existing technique(s) can be ques-
tioned. However, our data preprocessing is an integral part
of the proposed approach and indicates better performance.
Another internal threat is that if keywords do not repeat
considerably among the bug reports of a particular developer,
our ANN module may not perform well. To reduce this threat,
our fusion-based models, such as ANN + CNN2 or ANN
+ CNN2 + CNN3 extract two types of features: repeating
keywords and contextual relationships. If repeating keywords
are missing, the model will rely on the contextual relationship
or vice versa.

VI. CONCLUSION
Assigning reported bugs to appropriate developers is a criti-
cal and often expensive aspect of software development. Au-
tomated bug assignments with minimum or no user interven-
tion could play a vital role in the bug resolution process. In
this study, we propose a novel information fusion-based deep
learning technique for automatically assigning the reported
bugs. In our approach, we extract two types of features:
(1) contextual relationship among consecutive words and (2)
repeating keywords from the bug reports. We conduct an
extensive ablation study of our proposed benchmark models
on eight widely used, open-source datasets and present the
results that show that our fusion-based approach performs
better than other existing deep-learning-based techniques.
The paper also contributes by debugging and reporting in-
sights on bug assignment errors and publishes all the code
used for running the experiments.

REFERENCES
[1] John Anvik, Lyndon Hiew, and Gail C Murphy. Who should fix this

bug? In Proceedings of the 28th international conference on Software
engineering, pages 361–370, 2006.

[2] G Murphy and Davor Cubranic. Automatic bug triage using text cate-
gorization. In Proceedings of the Sixteenth International Conference on
Software Engineering & Knowledge Engineering, pages 1–6, 2004.

[3] Kevin Crowston, James Howison, and Hala Annabi. Information systems
success in free and open source software development: Theory and mea-
sures. Software Process: Improvement and Practice, 11(2):123–148, 2006.

[4] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. Improving bug
triage with bug tossing graphs. In Proceedings of the 7th joint meeting
of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 111–120,
2009.

[5] John Anvik and Gail C Murphy. Reducing the effort of bug report triage:
Recommenders for development-oriented decisions. ACM Transactions
on Software Engineering and Methodology, 20(3):1–35, 2011.

[6] ATLASSIAN. JIRA Software. https://www.atlassian.com/software/jira.
[Online], [Accessed 2021-02-07].

[7] bugzilla.org. Bugzilla. https://www.bugzilla.org/download/. [Online],
[Accessed 2021-02-07].

[8] Geunseok Yang, Tao Zhang, and Byungjeong Lee. Towards semi-
automatic bug triage and severity prediction based on topic model and
multi-feature of bug reports. In IEEE 38th Annual Computer Software
and Applications Conference, pages 97–106, 2014.

[9] Jifeng Xuan, He Jiang, Zhilei Ren, Jun Yan, and Zhongxuan Luo. Auto-
matic bug triage using semi-supervised text classification. In Proceedings
of the 22nd International Conference on Software Engineering & Knowl-
edge Engineering, pages 209–214, 2010.

[10] Sun-Ro Lee, Min-Jae Heo, Chan-Gun Lee, Milhan Kim, and Gaeul Jeong.
Applying deep learning based automatic bug triager to industrial projects.
In Proceedings of the 11th Joint Meeting on foundations of software
engineering, pages 926–931, 2017.

[11] Senthil Mani, Anush Sankaran, and Rahul Aralikatte. Deeptriage: Explor-
ing the effectiveness of deep learning for bug triaging. In Proceedings
of the ACM India Joint International Conference on Data Science and
Management of Data, pages 171–179, 2019.

[12] Shikai Guo, Xinyi Zhang, Xi Yang, Rong Chen, Chen Guo, Hui Li, and
Tingting Li. Developer activity motivated bug triaging: via convolutional
neural network. Neural Processing Letters, 51(3):2589–2606, 2020.

[13] Syed Farhan Alam Zaidi, Faraz Malik Awan, Minsoo Lee, Honguk Woo,
and Chan-Gun Lee. Applying convolutional neural networks with different
word representation techniques to recommend bug fixers. IEEE Access,
8:213729–213747, 2020.

[14] Atish Kumar Dipongkor. Bug Triage using Information Fusion.
https://github.com/dipongkor/bug-triage/.

[15] Michael Fischer, Martin Pinzger, and Harald Gall. Analyzing and relating
bug report data for feature tracking. In IEEE Working Conference on
Reverse Engineering, volume 3, pages 90–99, 2003.

[16] Ivan T Bowman and Richard C Holt. Reconstructing ownership architec-
tures to help understand software systems. In Proceedings of the Seventh
International Workshop on Program Comprehension, pages 28–37, 1999.

[17] Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan
Diehl. Mining version histories to guide software changes. IEEE
Transactions on Software Engineering, 31(6):429–445, 2005.

[18] Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda Minch,
Jiayang Sun, and Bin Wang. Automated support for classifying software
failure reports. In Proceedings of the 25th International Conference on
Software Engineering, 2003, pages 465–475, 2003.

[19] Dominique Matter, Adrian Kuhn, and Oscar Nierstrasz. Assigning bug
reports using a vocabulary-based expertise model of developers. In 6th
IEEE international working conference on mining software repositories,
pages 131–140, 2009.

[20] Ramin Shokripour, John Anvik, Zarinah M Kasirun, and Sima Zamani.
Why so complicated? simple term filtering and weighting for location-
based bug report assignment recommendation. In 10th Working Confer-
ence on Mining Software Repositories (MSR), pages 2–11, 2013.

[21] Rafi Almhana and Marouane Kessentini. Considering dependencies be-
tween bug reports to improve bugs triage. Automated Software Engineer-
ing, 28(1):1–26, 2021.

[22] Pamela Bhattacharya, Iulian Neamtiu, and Christian R Shelton. Au-
tomated, highly-accurate, bug assignment using machine learning and
tossing graphs. Journal of Systems and Software, 85(10):2275–2292,
2012.

[23] Adrian-Cătălin Florea, John Anvik, and Răzvan Andonie. Spark-based
cluster implementation of a bug report assignment recommender system.
In International Conference on artificial intelligence and soft computing,
pages 31–42, 2017.

[24] Behzad Soleimani Neysiani, Seyed Morteza Babamir, and Masayoshi
Aritsugi. Efficient feature extraction model for validation performance
improvement of duplicate bug report detection in software bug triage
systems. Information and Software Technology, 126:106344, 2020.

14 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

[25] Syed Nadeem Ahsan, Javed Ferzund, and Franz Wotawa. Automatic
software bug triage system (bts) based on latent semantic indexing and
support vector machine. In Fourth International Conference on Software
Engineering Advances, pages 216–221, 2009.

[26] Sana Nasim, Saad Razzaq, and Javed Ferzund. Automated change request
triage using alpha frequency matrix. In Frontiers of Information Technol-
ogy, pages 298–302, 2011.

[27] Wenjin Wu, Wen Zhang, Ye Yang, and Qing Wang. Drex: Developer
recommendation with k-nearest-neighbor search and expertise ranking.
In 18th Asia-Pacific Software Engineering Conference, pages 389–396,
2011.

[28] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. Accurate developer
recommendation for bug resolution. In 20th Working Conference on
Reverse Engineering (WCRE), pages 72–81, 2013.

[29] Leif Jonsson, Markus Borg, David Broman, Kristian Sandahl, Sigrid
Eldh, and Per Runeson. Automated bug assignment: Ensemble-based
machine learning in large scale industrial contexts. Empirical Software
Engineering, 21(4):1533–1578, 2016.

[30] Xin Ge, Shengjie Zheng, Jiahui Wang, and Hui Li. High-dimensional
hybrid data reduction for effective bug triage. Mathematical Problems in
Engineering, 2020, 2020.

[31] Wei Zhang. Efficient bug triage for industrial environments. In IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME),
pages 727–735, 2020.

[32] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. In Yoshua Bengio and
Yann LeCun, editors, 1st International Conference on Learning Represen-
tations, Workshop Track Proceedings, 2013.

[33] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing, pages
1532–1543, 2014.

[34] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word
representations. In Marilyn A. Walker, Heng Ji, and Amanda Stent, editors,
Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, pages 2227–2237, 2018.

[35] Syed Farhan Alam Zaidi. Bug Triage Datasets: Sun Firefox, JDT, Net-
beans, GUO and GCC. https://github.com/farhan-93/bugtriage. [Online],
[Accessed 2021-02-07].

[36] Senthil Mani. Bug Triage Datasets: Google Choromium, Mozilla Firefox
and Mozilla Core. http://bugtriage.mybluemix.net. [Online], [Accessed
2021-02-07].

[37] Data mining and knowledge discovery. In Robert A. Meyers, editor,
Encyclopedia of Physical Science and Technology (Third Edition), pages
229–246. Academic Press, New York, third edition edition, 2003.

[38] Atish Kumar Dipongkor, Md. Saiful Islam, Humayun Kayesh,
Md. Shafaeat Hossain, Adnan Anwar, Khandaker Abir Rahman, and
Imran Razzak. DAAB: deep authorship attribution in bengali. In
International Joint Conference on Neural Networks, pages 1–9, 2021.

[39] Michel Verleysen and Damien François. The curse of dimensionality in
data mining and time series prediction. In International work-conference
on artificial neural networks, pages 758–770, 2005.

[40] Kenneth Ward Church. Word2vec. Natural Language Engineering,
23(1):155–162, 2017.

[41] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014
conference on empirical methods in natural language processing, pages
1532–1543, 2014.

[42] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In
Neural networks for perception, pages 65–93. 1992.

[43] Richard Meyes, Melanie Lu, Constantin Waubert de Puiseau, and Tobias
Meisen. Ablation studies in artificial neural networks. arXiv preprint
arXiv:1901.08644, 2019.

[44] Václav Dedík and Bruno Rossi. Automated bug triaging in an industrial
context. In 42nd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pages 363–367, 2016.

[45] Ying Yin, Xiangjun Dong, and Tiantian Xu. Rapid and efficient bug
assignment using elm for iot software. IEEE Access, 6:52713–52724,
2018.

[46] Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou, Zhongxuan
Luo, and Xindong Wu. Towards effective bug triage with software

data reduction techniques. IEEE transactions on knowledge and data
engineering, 27(1):264–280, 2014.

[47] Zhilu Zhang and Mert R Sabuncu. Generalized cross entropy loss
for training deep neural networks with noisy labels. arXiv preprint
arXiv:1805.07836, 2018.

[48] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection. In Proceedings of the IEEE
international conference on computer vision, pages 2980–2988, 2017.

[49] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv
preprint arXiv:1803.08375, 2018.

[50] Ali Sajedi Badashian, Abram Hindle, and Eleni Stroulia. Crowdsourced
bug triaging. In IEEE International Conference on Software Maintenance
and Evolution, pages 506–510, 2015.

ATISH KUMAR DIPONGKOR Atish Kumar
Dipongkor, a PhD student at George Mason Uni-
versity in the United States, has a educational
background in software engineering, with a B.Sc.
and M.Sc. from the University of Dhaka in
Bangladesh. His research focus is on the intersec-
tion between software engineering and machine
learning, as well as natural language processing.

MD. SAIFUL ISLAM (SM’21) is a Senior Lec-
turer at the School of Information and Physical
Sciences, The University of Newcastle, Australia.
He has completed his Ph.D. in Computer Sci-
ence and Software Engineering at the Swinburne
University of Technology, Australia, in February
2014. He received his B.Sc. (Hons.) and M.S.
degree in Computer Science and Engineering from
the University of Dhaka, Bangladesh, in 2005 and
2007, respectively. His current research interests

are in the areas of artificial intelligence, big data and security analytics.

ISHTIAQUE HUSSAIN is a former assistant pro-
fessor of computer science at the Pennsylvania
State University - Abington. Currently he works
as a senior software engineer at a company in New
York. He received his Ph.D. from University of
Texas at Arlington, and B.S. degree from Univer-
sity of Dhaka, Bangladesh in Computer Science.

VOLUME 4, 2016 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features for Automatic Bug Assignments

SIRA YONGCHAREON (SM’18) is an Asso-
ciate Professor at the computer science and soft-
ware engineering department, Auckland Univer-
sity of Technology, New Zealand. He received
his PhD and M.IT degrees from Swinburne Uni-
versity of Technology, Australia in 2012 and
2009, respectively. His research interest is in the
area of ubiquitous/pervasive computing, including
AI/Machine learning for the Internet of Things,
ambient intelligence, human activity recognition,

wireless sensing, and mobile/edge computing in intelligent environments.
He has publications in several reputable journals and international con-
ferences including ACM CSUR, IEEE IoT, IEEE TSC, FGCS, ESWA,
Knowledge-Based Systems, IEEE Sensors, Information Systems (Elsevier),
WWWJ, ACM TMIS, Computers in Industry, IEEE TrustCom, IEEE SCC,
BPM, CoopIS, and WISE. He is a Senior Member of IEEE and ACM.

SAJIB MISTRY is a Senior Lecturer at the School
of EECMS in Curtin University, Australia. He was
a Postdoctoral Research Fellow at the School of
Computer Science in the University of Sydney,
Australia. He was awarded PhD from the School
of Science (Computer Science), RMIT University,
Melbourne, Australia. He completed his Masters
(MS) and Bachelor (BS) in Computer Science
from the University of Dhaka, Bangladesh. He has
teaching/research experience in the University of

Sydney, RMIT University, Monash University, University of Dhaka, and
University of Liberal Arts. His primary research area is Service Computing,
Cloud/Edge computing, Machine Learning, Augmented Reality, and the
Internet of Things (IoT). He has authored and edited several books and
published in several top journals and conferences such as ACM TOIT,
CACM, IEEE TSC, IEEE TKDE, ICSOC, ICWS, SCC, etc. He won the
Best Research Paper Award in ICSOC 2016 and RMIT Publication Award
2016. One of his journal papers was selected as the spotlight paper for IEEE
TSC. He also contributed significantly with his community services as PC
Chair in ASSRI 2018, PC member in ICWS 2019-2020, ICSOC 2019, and
WISE 2018-2019. He is a regular reviewer of top journals and conferences
in the TCSVC field. He is a member of the prestigious Sydney IoT Hub.

16 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3273595

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

