Volatile Components and Preliminary Antibacterial Activity of Tamarillo (Solanum betaceum Cav.)

Diep, TT
Yoo, MJY
Pook, C
Sadooghy-Saraby, S
Gite, A
Rush, E
Item type
Journal Article
Degree name
Journal Title
Journal ISSN
Volume Title

Tamarillo is a nutrient-dense fruit with a unique aroma from its volatile compounds (VCs). In this study, we aimed to compare the volatile profiles: (i) of fresh and freeze-dried tamarillo; (ii) detected using Thermal Desorption–Gas Chromatography–Mass Spectrometry (TD–GC–MS) and Solid-Phase MicroExtraction–Gas Chromatography-Mass Spectrometry (SPME–GC–MS); (iii) of freeze-dried pulp and peel of New Zealand grown tamarillo. The possible antibacterial activity of freeze-dried tamarillo extracts was also investigated. We show that freeze-drying maintained most of the VCs, with some being more concentrated with the loss of water. The most abundant VC in both fresh and freeze-dried tamarillo was hexanoic acid methyl ester for pulp (30% and 37%, respectively), and (E)-3-Hexen-1-ol for peel (36% and 29%, respectively). With the use of TD–GC–MS, 82 VCs were detected for the first time, when compared to SPME–GC–MS. Methional was the main contributor to the overall aroma in both peel (15.4 ± 4.2 μg/g DW) and pulp (118 ± 8.1 μg/g DW). Compared to water as the control, tamarillo extracts prepared by water and methanol extraction showed significant antibacterial activity against E. coli, P. aeruginosa, and S. aureus with zone of inhibition of at least 13.5 mm. These results suggest that freeze-dried tamarillo has a potential for use as a natural preservative to enhance aroma and shelf life of food products.

Freeze-dried tamarillo; TD–GC–MS; Volatiles; Antimicrobial activity
Foods, 10(9), 2212. doi:10.3390/foods10092212
Rights statement
© 2021 by the authors. Li censee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and con ditions of the Creative Commons At tribution (CC BY) license (http://crea tivecommons.org/licenses/by/4.0/).