Repository logo
 

Incremental Linear Discriminant analysis for classification of Data Streams

Date

Supervisor

Item type

Journal Article

Degree name

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE

Abstract

This paper presents a constructive method for deriving an updated discriminant eigenspace for classification when bursts of data that contains new classes is being added to an initial discriminant eigenspace in the form of random chunks. Basically, we propose an incremental linear discriminant analysis (ILDA) in its two forms: a sequential ILDA and a Chunk ILDA. In experiments, we have tested ILDA using datasets with a small number of classes and small-dimensional features, as well as datasets with a large number of classes and large-dimensional features. We have compared the proposed ILDA against the traditional batch LDA in terms of discriminability, execution time and memory usage with the increasing volume of data addition. The results show that the proposed ILDA can effectively evolve a discriminant eigenspace over a fast and large data stream, and extract features with superior discriminability in classification, when compared with other methods. © 2005 IEEE.

Description

Keywords

Source

Publisher's version

Rights statement

©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.