KEDRI - the Knowledge Engineering and Discovery Research Institute
Permanent link for this collection
KEDRI - the Knowledge Engineering and Discovery Research Institute of Auckland University of Technology was established in June 2002 and since then has been developing novel information processing methods, technologies and their applications to enhance discoveries across different areas of science and engineering. The methods are mainly based on principles from Nature, such as brain information processing, evolution, genetics, quantum physics.
Browse
Recent Submissions
Now showing 1 - 5 of 66
- ItemA Generalisability Theory Approach to Quantifying Changes in Psychopathology Among Ultra-High-Risk Individuals for Psychosis(Springer Science and Business Media LLC, 2024-10-04) Doborjeh, Zohreh; N. Medvedev, Oleg; Doborjeh, Maryam; Singh, Balkaran; Sumich, Alexander; Budhraja, Sugam; Goh, Wilson Wen Bin; Lee, Jimmy; Williams, Margaret; M-K Lai, Edmund; Kasabov, NikolaDistinguishing stable and fluctuating psychopathological features in young individuals at Ultra High Risk (UHR) for psychosis is challenging, but critical for building robust, accurate, early clinical detection and prevention capabilities. Over a 24-month period, 159 UHR individuals were assessed using the Positive and Negative Symptom Scale (PANSS). Generalisability Theory was used to validate the PANSS with this population and to investigate stable and fluctuating features, by estimating the reliability and generalisability of three factor (Positive, Negative, and General) and five factor (Positive, Negative, Cognitive, Depression, and Hostility) symptom models. Acceptable reliability and generalisability of scores across occasions and sample population were demonstrated by the total PANSS scale (Gr = 0.85). Fluctuating symptoms (delusions, hallucinatory behaviour, lack of spontaneity, flow in conversation, emotional withdrawal, and somatic concern) showed high variability over time, with 50–68% of the variance explained by individual transient states. In contrast, more stable symptoms included excitement, poor rapport, anxiety, guilt feeling, uncooperativeness, and poor impulse control. The 3-factor model of PANSS and its subscales showed robust reliability and generalisability of their assessment scores across the UHR population and evaluation periods (G = 0.77–0.93), offering a suitable means to assess psychosis risk. Certain subscales within the 5-factor PANSS model showed comparatively lower reliability and generalisability (G = 0.33–0.66). The identified and investigated fluctuating symptoms in UHR individuals are more amendable by means of intervention, which could have significant implications for preventing and addressing psychosis. Prioritising the treatment of fluctuating symptoms could enhance intervention efficacy, offering a sharper focus in clinical trials. At the same time, using more reliable total scale and 3 subscales can contribute to more accurate assessment of enduring psychosis patterns in clinical and experimental settings.
- ItemStroke Lesion Segmentation and Deep Learning: A Comprehensive Review(MDPI AG, 2024-01-17) Malik, Mishaim; Chong, Benjamin; Fernandez, Justin; Shim, Vickie; Kasabov, Nikola Kirilov; Wang, AlanStroke is a medical condition that affects around 15 million people annually. Patients and their families can face severe financial and emotional challenges as it can cause motor, speech, cognitive, and emotional impairments. Stroke lesion segmentation identifies the stroke lesion visually while providing useful anatomical information. Though different computer-aided software are available for manual segmentation, state-of-the-art deep learning makes the job much easier. This review paper explores the different deep-learning-based lesion segmentation models and the impact of different pre-processing techniques on their performance. It aims to provide a comprehensive overview of the state-of-the-art models and aims to guide future research and contribute to the development of more robust and effective stroke lesion segmentation models.
- ItemBrain-Inspired Spatio-Temporal Associative Memories for Neuroimaging Data Classification: EEG and fMRI(MDPI AG, 2023-11-21) Kasabov, Nikola K; Bahrami, Helena; Doborjeh, Maryam; Wang, AlanHumans learn from a lot of information sources to make decisions. Once this information is learned in the brain, spatio-temporal associations are made, connecting all these sources (variables) in space and time represented as brain connectivity. In reality, to make a decision, we usually have only part of the information, either as a limited number of variables, limited time to make the decision, or both. The brain functions as a spatio-temporal associative memory. Inspired by the ability of the human brain, a brain-inspired spatio-temporal associative memory was proposed earlier that utilized the NeuCube brain-inspired spiking neural network framework. Here we applied the STAM framework to develop STAM for neuroimaging data, on the cases of EEG and fMRI, resulting in STAM-EEG and STAM-fMRI. This paper showed that once a NeuCube STAM classification model was trained on a complete spatio-temporal EEG or fMRI data, it could be recalled using only part of the time series, or/and only part of the used variables. We evaluated both temporal and spatial association and generalization accuracy accordingly. This was a pilot study that opens the field for the development of classification systems on other neuroimaging data, such as longitudinal MRI data, trained on complete data but recalled on partial data. Future research includes STAM that will work on data, collected across different settings, in different labs and clinics, that may vary in terms of the variables and time of data collection, along with other parameters. The proposed STAM will be further investigated for early diagnosis and prognosis of brain conditions and for diagnostic/prognostic marker discovery.
- ItemEffective Air Pollution Prediction by Combining Time Series Decomposition with Stacking and Bagging Ensembles of Evolving Spiking Neural Networks(Elsevier, 2023-10-28) Maciąg, Piotr S; Bembenik, Robert; Piekarzewicz, Aleksandra; Del Ser, Javier; Lobo, Jesus L; Kasabov, Nikola KIn this article, we introduce a new approach to air pollution prediction using the CEEMDAN time series decomposition method combined with the two-layered ensemble of predictors created based on the stacking and bagging techniques. The proposed ensemble approach is outperforming other selected state-of-the-art models when the bagging ensemble consisting of evolving Spiking Neural Networks (eSNNs) is used in the second layer of the stacking ensemble. In our experiments, we used the PM10 air pollution and weather dataset for Warsaw. As the results of the experiments show, the proposed ensemble can achieve the following error and agreement values over the tested dataset: error RMSE 6.91, MAE 5.14 and MAPE 21%; agreement IA 0.94. In addition, this article provides the computational and space complexity analysis of eSNNs predictors and offers a new encoding method for spiking neural networks that can be effectively applied for values of skewed distributions.
- ItemFilter and Wrapper Stacking Ensemble (FWSE): A Robust Approach for Reliable Biomarker Discovery in High-Dimensional Omics Data(Oxford University Press (OUP), 2023) Budhraja, Sugam; Doborjeh, Maryam; Singh, Balkaran; Tan, Samuel; Doborjeh, Zohreh; Lai, Edmund; Merkin, Alexander; Lee, Jimmy; Goh, Wilson; Kasabov, NikolaSelecting informative features, such as accurate biomarkers for disease diagnosis, prognosis and response to treatment, is an essential task in the field of bioinformatics. Medical data often contain thousands of features and identifying potential biomarkers is challenging due to small number of samples in the data, method dependence and non-reproducibility. This paper proposes a novel ensemble feature selection method, named Filter and Wrapper Stacking Ensemble (FWSE), to identify reproducible biomarkers from high-dimensional omics data. In FWSE, filter feature selection methods are run on numerous subsets of the data to eliminate irrelevant features, and then wrapper feature selection methods are applied to rank the top features. The method was validated on four high-dimensional medical datasets related to mental illnesses and cancer. The results indicate that the features selected by FWSE are stable and statistically more significant than the ones obtained by existing methods while also demonstrating biological relevance. Furthermore, FWSE is a generic method, applicable to various high-dimensional datasets in the fields of machine intelligence and bioinformatics.