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Classification of Data Streams
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Abstract—This paper presents a constructive method for de-
riving an updated discriminant eigenspace for classification when
bursts of data that contains new classes is being added to an initial
discriminant eigenspace in the form of random chunks. Basically,
we propose an incremental linear discriminant analysis (ILDA) in
its two forms: a sequential ILDA and a Chunk ILDA. In experi-
ments, we have tested ILDA using datasets with a small number
of classes and small-dimensional features, as well as datasets with
a large number of classes and large-dimensional features. We
have compared the proposed ILDA against the traditional batch
LDA in terms of discriminability, execution time and memory
usage with the increasing volume of data addition. The results
show that the proposed ILDA can effectively evolve a discriminant
eigenspace over a fast and large data stream, and extract features
with superior discriminability in classification, when compared
with other methods.

Index Terms—Classification, data stream, incremental linear
discriminant analysis, incremental principle component analysis,
linear discriminant analysis, pattern recognition, principle com-
ponent analysis.

I. INTRODUCTION

L INEAR Discriminant Analysis (LDA), also known as
Fisher Discriminant Analysis (FDA), seeks directions

for efficient discrimination, while another technique known as
principle component analysis (PCA) [10], [11] seeks directions
efficient for representation. The typical implementation of these
two techniques assumes that a complete dataset for training
is given in advance, and learning is carried out in one batch.
Under the terms, both techniques have been widely used in the
research of face recognition and mobile robotics [13]–[16], as
well as some data mining and knowledge discovery applications
[17], [18].

However, when we conduct LDA/PCA learning over datasets
in real-world applications, we often confront difficult situation
where a complete set of training samples is not given in advance.
Actually in most cases, data are presented as a stream of chunks
illustrated in Fig. 1. Due to the fact that we can not know what
kind of data will be presented in the future, both the scale of
the chunks and the individual samples in each chunk are given
randomly.
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A straightforward approach is that we can collect data when-
ever new data are presented and then construct a provisional
system by a batch learning over the collected data so far. How-
ever, it is obvious that such system only works under a condition
of a large memory and high computation expenses, because the
system would need to maintain a huge memory to store the data
either previously learned, or newly presented, possibly without
a limit. Moreover, the system has to discard the knowledge ac-
quired in the past, even if the learning of 99.9% data is finished,
and repeat the learning from the beginning whenever one addi-
tional sample is presented.

Obviously, one-pass incremental learning gives a solution
to the above problem. In this learning scheme, a system must
acquire knowledge with a single presentation of the training
data and retaining the knowledge acquired in the past without
keeping a large number of training samples.

To achieve this, several methods [1]–[3] have been pro-
posed to perform incremental learning by updating eigenspace
models. Among them, Hall et al. [1] proposed Incremental PCA
(IPCA) based on the updating of covariance matrix through
a residue estimating procedure. However, all these methods
have only considered adding exactly one new sample to an
eigenspace model at a time. Later, Hall improved his method
by proposing a method of merging and splitting eigenspace
models [4] that allows a chunk of new samples to be learned
in a single step. To speed up the IPCA computation, Weng et
al. [8] proposed a fast IPCA approximation algorithm com-
puting the principle components of a sequence of samples
incrementally without estimating the covariance matrix. Based
on Hall’s method, we previously developed a one-pass incre-
mental classification algorithm that has effectively solved the
problem of online face membership authentication [5], [6]. This
pattern recognition algorithm is completely one-pass, because
both feature selection and classification are modeled using
one-pass incremental learning method. IPCA is used for feature
selection. The K-Nearest Neighbor (KNN), with prototypes
updated using evolving clustering method (ECM) [7], is used
as an incremental classifier.

Motivated by the IPCA, we propose here an incremental
linear discriminant analysis (ILDA) for the classification of
data streams. A difficulty for incremental LDA modeling,
compared with previous IPCA modeling, is that all class data
of a complete training dataset may not be presented at every
incremental learning stage. The number of classes presented at
each learning stage might be very random in real life as shown
in Fig. 1. New classes of data may be presented after several
learning stages are past, such as the third-class data in Fig. 1,
which starts to be presented in the data stream from stage ,
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Fig. 1. Data stream for classification.

and was not presented at stages and . In this paper, we
derive a solution of ILDA updating discriminant eigenspace
while bursts of new class data are coming in at different times.

The rest of this paper is organized as follows. Section II
defines a discriminant eigenspace model at the beginning
and later derives two incremental linear discriminant analysis
approaches: Sequential ILDA and Chunk ILDA. Section III
presents various tests of ILDA on incremental learning over
both UCL data and face data. Finally, conclusions are given in
Section IV.

II. INCREMENTAL LDA

Let us assume that training samples (
) in classes have been presented so far. According

to definition [10], LDA seeks a linear transformation over
in such a way that the ratio of and is maximized, where

(1)

is the within-class scatter matrix, and

(2)

is the between-class scatter matrix. is the number of samples
in class such that . is the
mean vector of , and is the mean vector in class .

Because the transformation matrix can be obtained by con-
ducting an eigenvalue decomposition of matrix ,

(3)

a discriminant eigenspace, also called fisherspace, model can
be represented by a discriminant eigenspace model as

.
is an matrix whose columns correspond to the dis-

criminant eigenvectors. In applications, eigenvectors with small
eigenvalue can be discarded to compress a high dimensional
data to a low-dimensional feature with an enhanced discrimi-
nation.

The traditional LDA works in a batch way assuming that the
whole dataset is given in advance and is trained in one batch. We
called it Batch LDA in this paper. However, in a streaming envi-
ronment as in Fig. 1, new samples are being presented continu-
ously, possibly without end. The addition of these new samples
will lead to the changes of the original mean vector , within

class scatter matrix , as well as between-class distance ma-
trix , therefore the whole discriminant eigenspace model
should be updated.

A. Sequential Incremental LDA

Suppose that the new samples are acquired sequentially,
, possibly to infinity.

Let us consider the case that the th training sample
is presented with class label . Now, the question is how

to compute the updated discriminant eigenspace model
for using only and .

The updated mean is

(4)

For the between-class scatter matrix , if repre-
senting a newly introduced class, then

(5)

where is the number of samples in class after is presented,
when , when , and

when .
If , then the updated matrix is

(6)

where and , if
belongs to class ; else and .

For within-class scatter matrix , if is a new class sample,
which means is the th class, then the updated within-
class scatter matrix does not change:

(7)

Else, if , then the updated matrix is (see Proof
A in the Appendix)

(8)

(9)
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B. Chunk Incremental LDA

Suppose that in another case, the new samples are acquired in
a chunk way to infinity. As shown in Fig. 1, at each
time point , a chunk of samples instead of just one sample

are acquired, where is the number of samples
in one chunk, which is a random positive integer, and .

In this sense, we need to derive a solution to the following
problem. Let and be two sets observations, where

is the presented observation set, and is a set of new
observations. Let their discriminant eigenspace models be

and , respectively.
As in IPCA [4], the above updating problem here is to compute
the new fisherspace model using
fisherspace models and .

Without loss of generality, we can assume that of new
samples belong to class , and thus, ,

and
, where is the mean of new samples in class .

The updated mean is

(10)

where
The updated matrix is

(11)

The updated matrix is (see Proof B in the Appendix)

(12)

(13)

where the second term is the scatter matrix of the new sample
class mean vector around the mean vector of class .

(14)

The third term is the scatter matrix of the new sample
mean vector around the mean vector of class

(15)

The fourth term is a within-class scatter matrix of the new
samples

(16)

TABLE I
EVALUATED UCI DATASETS

In addition, we can also assume of new samples be-
long to class without loss of generality. In this case, the
updated between-class matrix (5) can be rewritten as

(17)

where is the number of samples in class after is presented.
If , then , else .

In addition, the updated within-class matrix (7) can be
rewritten as

(18)

where .

III. RESULTS AND DISCUSSIONS

In this section, we have examined the efficiency and accuracy
of our incremental LDA methods compared to incremental PCA
(IPCA) [1], [4] and batch LDA method for the classification of
datastreams. We conducted a thorough experimental and perfor-
mance study using datasets with few classes and small-dimen-
sional features as well as datasets with many classes and large-
dimensional features. Particularly, we are interested in evalu-
ating 1) the discriminability of ILDA and 2) the execution time
and memory usages of ILDA computation with the increasing
volumn of data addition. For all experiments, we used Matlab
code running on a PC with Intel Pentium 4 2.8-GHZ CPU and
512-Mb RAM.

A. Experimental Setup

For every test, first, we construct an initial feature space
(eigenspace) using 10% of the total samples, in which at least
two classes data are ensured to be included according to the
definition of (2). These training samples are used for calculating
eigenvectors and eigenvalues through conventional LDA/PCA.
The remaining training data are enumerated into a number of
chunks without any consideration about the chunk size and
number of classes in each chunk.



908 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 5, OCTOBER 2005

Fig. 2. Comparison of ILDA and IPCA learning on (a) the variation of classification accuracy, (b) IPCA projection of Iris data onto the first two eignevectors, (c)
ILDA projection of Iris data onto the first discriminant eigenvectors, and (d) the original distribution of Iris data by the first two dimensions.
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When incremental learning is carried out, training samples
are randomly drawn from the remaining training dataset in
the scale of chunk instead of one by one sample. Then, the
eigenspace is updated by an ILDA computation introduced in
Section II or IPCA computation of [4] with chunks of data.

Finally, to test the efficiency of ILDA for classification, we
encode features by projecting data presented so far to the up-
dated LDA discriminant eigenspace and then classify the fea-
ture data using KNN classifier( ). The classification accu-
racy is evaluated under a Leave-one-out cross-validation policy.
For each dataset, while selecting features of ILDA, we rank the
eigenvectors by their energy, and select a set of top energy eign-
evectors. The number of eigenvectors used in ILDA equals to
the number of eigenvectors that Batch LDA uses to get the best
classification accuracy on the dataset.

Since the events of data arriving in the above incremental
learning may not happen at regular time intervals, we use the
term learning stage instead of the usual time scale. Here, the
number of learning stages is equivalent to the number of samples
that have been learned by incremental models. In addition, for
the convenience of illustration, we also define the percentage of
samples presented so far at current stage to measure the progress
of incremental learning.

B. UCI Datasets

First presented here are experiments with a focus on evalu-
ating the class-discriminant ability of ILDA. The database we
used consists of eight standard datasets selected from UCI Ma-
chine Learning Repository [9], where each dataset has its fea-
tures 100% of continuous/integer values and no missing value.
The dataset information is summarized in Table I. As can be
seen, every dataset has no more than 12 classes and 60-dimen-
sion features.

1) Discriminability: Over the above eight UCI datasets, we
carried out the incremental learning described in Section III-A
to test the discriminablity of ILDA for classification.

As an example, Fig. 2 shows a time course of the above incre-
mental learning over Iris data with three learning stages, whose
progress of incremental learning are at 30%, 65% and 100%, re-
spectively, in which (a) gives the variation of classification accu-
racy; (d) is distribution of Iris data by the first two dimensions;
and (b) and (c) are IPCA projection and ILDA projection of Iris
data onto the first two eigenvectors, respectively.

Here, ILDA is compared with IPCA on the variation of
classification accuracy and feature distribution with the orig-
inal data as a reference. As can be seen in Fig. 2(a), ILDA is
leading the classification accuracy at most stages of incremental
learning, particularly it achieves a better final classification
accuracy than IPCA. This superiority on classification can
also clearly be reflected from the discrimination differences
between corresponding ILDA projections in Fig. 2(d) and IPCA
projections in Fig. 2(c).

2) Similarity: To see the similarity of the two discriminant
eigenspaces constructed by ILDA and Batch LDA, the inner
products between discriminant eigenvectors obtained by ILDA
and LDA are evaluated. For ILDA, the discriminant eigen-
vectors ILDA are being updated over the learning stages. For

Fig. 3. Typical time courses of inner products d � d between discriminant
eigenvectors obtained by ILDA and batch ILDA as the incremental learning
stages proceed.

Batch LDA, the discriminant eigenvectors are calculated from
the whole dataset in a batch mode.

Fig. 3 shows typical time courses of inner products
between discriminant eigenvectors obtained by ILDA and batch
ILDA learning over Iris data. Here, we assume that each eigen-
vector has an unit length, and the total 4 discriminant eigenvec-
tors of ILDA and LDA are compared correspondingly in Fig. 4.

As seen from Fig. 3, and have large values from the be-
ginning of learning stages. Although and have some fluc-
tuations during the incremental learning, the values converge to
the maximum value at the final stage. Hence, we can observe
that ILDA is updating the discriminant eigenspace gradually as
the progress of incremental learning grows, and it can finally
construct exactly the same discriminant eigenspace as that of
Batch LDA.

3) Performances: Table II presents the comparison results
of ILDA, Batch LDA, IPCA on the classification at the final
incremental learning stage for eight UCL datasets, where the
number of Eigenvector (denoted as no. Eig.) specifies the di-
mension of LDA and PCA eigenfeatures used in classification.
As can be seen, when using the same number of eigenvectors,
the classification accuracies due to ILDA and LDA are very sim-
ilar. In most cases, they are exactly the same, but the accuracy
from IPCA are obviously lower than that of ILDA. It suggests
that discriminant ability of ILDA is equivalent to that of LDA,
and is better than IPCA.

Table III presents a comparison between ILDA and IPCA
with a focus on the classification stability during the whole
course of incremental learning for the above eight datasets. For
each dataset, we carried out the incremental learning described
in 3.1 for 100 runs. We calculated 1) the course of accuracy
(denoted by Course Acc.) by averaging the classification accu-
racies at every evaluation stage for 100 runs (data are provided
and trained in the scale of chunk and not every sample is
counted as a stage for evaluation if the chunk-size is greater
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Fig. 4. Variation of ILDA versus IPCA on recognition accuracy as new classes of face images are being added in the form of random chunks. The framed digits
around the ILDA curve identify the number of presented classes by the current learning stage.

TABLE II
COMPARISON RESULTS OF ILDA, BATCH LDA, IPCA ON THE CLASSIFICATION

AT THE FINAL INCREMENTAL LEARNING STAGE FOR 8 UCL DATASETS

than one) and 2) the course of variance (denoted by Course
Var.) by conducting variance computing on the classification
accuracies at every evaluation stage for 100 runs.

As can be found in Table III, the course of accuracy due to
ILDA is better than IPCA on average, and so is the course of
variance. It indicates that the proposed ILDA is delivering a set
of features optimal for classification during the whole course of
incremental learning, and ILDA is superior to IPCA either for
classification accuracy or classification stability.

C. Face Database

Next, we will show the performances of ILDA on a data-
base with a large number of classes and high dimension fea-
tures. Here, we used a benchmark MPEG-7 face database, which

TABLE III
COMPARISON BETWEEN ILDA AND IPCA IN TERMS OF CLASSIFICATION

ACCURACY AND VARIANCE IN THE WHOLE COURSE INCREMENTAL

LEARNING OVER EIGHT UCL DATASETS

consists of 1355 face images of 271 persons (five different face
images per person are taken), where each image has the size
of 56 46. The images have been selected from AR(Purdue),
AT&T, Yale, UMIST, University of Berne, and some face im-
ages obtained from MPEG-7 news videos [5], [6], [19].

1) Discriminability: Thus, we conducted the incremental
learning described in Section III-A on a database having 271
classes and 2576 (56 46) dimension features, where the first
30 eigenfeatures of ILDA/IPCA are taken to perform K-NN
leave-one-out classification. We tested the discriminabilty of
ILDA, specifically when bursts of new classes are presented at
different times. In addition, we evaluated the execution time and
memory costs of ILDA with the increase of new data addition.
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Fig. 5. Variation of ILDA versus IPCA on the final classification accuracy
under different number of eigenfeature dimension.

Fig. 4 illustrates the procedure of ILDA running on the
above face database. As the incremental learning proceeds,
new data arebeing added to the initial discriminant eigenspace
constructed on 10% of total images in a random way. As can
be seen in the figure, hundreds of samples are presented in one
chunk for some learning stages, but very few samples appear
at other stages. As a result of such random chunk-sizes, small
and large bursts of new classes data are coming in randomly
at different stages. From the numbers around ILDA curve, we
can see that the maximum number of new classes appeared
in one chunk is 56, and the minimum is 0, which means no
new class data appear in the current chunk. In spite of all this
unexpectedness of the coming data, the performance of ILDA
is still increasing steadily with the increasing of new data addi-
tion, and it is also much better than IPCA on the classification
accuracy.

As the dimension of eigenfeatures of Batch LDA may
strongly affect the classification performance, we have also
tested ILDA using a different number of eigenfeatures. Our
finding is, when the dimension of eigenfeature is over 30, as
shown in Figs. 5 and 6, the discriminability of ILDA in terms
of the final classification accuracy decreases, and IPCA out-
performing ILDA happens at some initial incremental learning
stages. It turns out that the few top energy ILDA discriminant
eigenvectors contain almost all the classification information
embedded in the original space, and ILDA is not guaranteed to
perform better than IPCA in some cases.

2) Execution Time: To evaluate the efficiency of ILDA,
we set the chunk-size as a constant value, and measured the
time taken by Chunk ILDA to finish an incremental learning
on a complete dataset. Note that chunk-size is predetermined
by environment (i.e., given task). To discover the relationship
between the ILDA execution time and the average chunk-size
given in data streams, we also used different chunk-sizes in
ILDA.

Over a dataset of 500 face images (including 100 persons,
each person presented by five images), the total time taken to

Fig. 6. Same incremental learning of ILDA and IPCA as in Fig. 4, but the used
eigenfeature dimensions are 50 and 90.

Fig. 7. Variation of time taken by Chunk ILDA and Sequencial ILDA to update
the discriminant eigenspace model with the increasing of new data addition.

compute a discriminant eigenspace model using the batch LDA
method and our ILDA models is compared in Fig. 7. As can
be seen, the time taken by Chunk ILDA with different chunk-
sizes is between the sequential ILDA time and the batch LDA
time. Actually, the time of ILDA is very much determined by
the chunk-size on average in the whole course of incremental
learning. As shown in Fig. 8, when the chunk-size is set as 500,
which is the size of the whole dataset, then Chunk ILDA uses 3.9
seconds, the same time as batch LDA uses, to finish the learning
task. Whereas, if the chunk-size is set as 1, Chunk ILDA takes
2335.8 s, which is the same amount of seconds that sequential
ILDA uses to finish the learning task. Chunk ILDA is efficient
for dealing with large and fast data streams because whatever
a chunk-size of data are in the data stream, Chunk ILDA can
process the data in one step. A slightly larger chunk-size results
in a big execution time reduction. As seen in Fig. 8, the time
taken by Chunk ILDA is being reduced from 2335.8 to 51.6 s,
as we increase the chunk-size from 1 to 50.
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Fig. 8. To compute a complete discriminant eigenspace model for a database
of 500 face images, time taken by Chunk ILDA under different chunk-sizes is
compared to the time expenses of sequential ILDA and batch LDA.

Fig. 9. Variation of Chunk ILDA and sequential ILDA on memory cost with
the increase of data addition.

We notice that Fig. 7 shows a distinct change in slope at the
stage of about 200 samples. The change of the slope responds to
two cases ILDA computing happened during the whole course
of incremental learning. At early learning stages, new classes are
continuously increasing with chunks of data being presented,
and ILDA constructs knowledge basis for each of new class by
(17) and (18), thus the execution time of ILDA increases rapidly.
After a certain learning stages (in the case of Fig. 7, it is about
200 samples), because very few new classes are presented from
now, ILDA is mainly updating the knowledge basis of the ex-
isting classes by (11) and (12). The reason why the increasing
of ILDA execution time is slow down (which makes the change
of the slop in Fig. 7) is due to the computing of (11) and (12) is
less time costed than that of (17) and (18).

3) Memory Usage: Along with the above execution time
measuring, we also estimated the amount of memory used
by ILDA and Batch LDA to complete the eigenspace model
learning over the same 500 face images (including 100
classes/persons, each class 5 images). We used Batch LDA’s
memory usage to compare with the memory usage of Chunk

ILDA and Sequential ILDA, as every 50 new samples are
presented.

As can be seen in Fig. 9, both Sequential ILDA and Chunk
ILDA are producing a memory accumulation with the increase
of new data addition. This happens, because the proposed ILDA
is based on the updating of within-class scatter matrix and
between-class scatter matrix . To update according to (8)
and (18), it needs to maintain a within-class covariance matrix

in memory for every new class.
It is not surprising that Sequential ILDA has a slower memory

usage growth than Chunk ILDA, because Sequential ILDA
is always learning on just one sample, while Chunk ILDA
is learning data in the scale of chunk. When the incremental
learning is finished, the memory usage of Chunk ILDA is
converging to a constant value that is about 40 M bytes smaller
than the total memory usages of Batch ILDA. For datasets
with a small number of classes and large number of samples in
each class (e.g., a dataset with five classes and 100 samples per
class), the memory usages for storing within-class covariance
matrices will be reduced largely. Thus, for data streams of a
smaller number of classes, the proposed ILDA would have a
much greater gain in memory usage.

IV. CONCLUSIONS

Like IPCA [1], [4], the essence of Incremental linear discrim-
inant analysis should be the incremental updating of the eigen-
decomposition. As an alternative solution of ILDA, this paper
proposed the method of incremental LDA deriving discriminant
eigen-space in a streaming environment without updating the
eigen-decomposition. The method is in terms of the incremental
updating of the between-class and within-class scatter matrices
and thus is able to deal with volumes of additional data.

We proposed ILDA with two computational approaches:
Sequencial ILDA and Chunk ILDA. Theoretically, Sequential
ILDA eventually is a special case of Chunk ILDA. This can
be proofed by substituting in (10)–(18). They
were introduced separately in this paper, because they actually
represent two categories of incremental learning: incremental
learning by updating old knowledge bases and incremental
learning by merging old knowledge bases with a new one,
respectively. In addition, they might have different practical
applications due to their differences in data streaming formats,
computational speed and memory usages.

To test the computational properties of ILDA, we used ILDA
in a real-life streaming environment in which data are coming
in the form of random chunks. We conducted various tests on
datasets with either a small number of classes and small-dimen-
sional features or a large number of classes and large-dimen-
sional features. We can summarize the properties of ILDA as
follows: 1) ILDA has an equivalent power to batch LDA in terms
of discriminability; 2) ILDA, in particular, chunk ILDA has very
high memory and speed efficiency due to its just one-pass com-
putation and chunk data processing, and the efficiency of ILDA
is determined by the average chunk-size taken in the whole
course of incremental learning; 3) ILDA is effective for han-
dling bursts of new classes coming in at different times; 4) as
compared with IPCA, ILDA is usually, but not guaranteed [10],
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to be superior to IPCA for classification. As shown in the test
of Fig. 6, the performance of IPCA outperforming ILDA may
happen at some early incremental learning stages, when the
LDA knowledge base is not strong due to too few samples in
a class presented at those stages.

One limitation of the proposed ILDA is that when the
chunk-size is too large, the memory cost of ILDA become
expensive, but this problem can be solved by partitioning a
big chunk to several smaller chunks and performing ILDA
on those smaller chunks data, respectively, or just using the
method in [8] to avoid the covariance matrix computation while
performing LDA. Nevertheless, it is very distinct that the above
optimal properties have determined ILDA as an useful method
when we conduct classification on fast and large data streams.

APPENDIX

Proof A

Given a new sample in the th class, where , we
then have the equation shown at the bottom of the page. Since

, the updated covariance matrix thus
equals

Proof B

Given new samples belong to class , according to defi-
nition, the updated covariance matrix is

(19)
There is two terms in above equation. For the first term

For the second term

Since, in the above equation

Thus, the second term equation can be simplified as

Now, substitute the above two simplified equation into the
first definition equation, and combine terms with the same
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scatter matrix; then, we can obtain the updated new covariance
matrix in the form of four terms as
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