AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tuned X-HYBRIDJOIN for Near-real-time Data Warehousing

Naeem, MA
Thumbnail
View/Open
Conference contribution (576.1Kb)
Permanent link
http://hdl.handle.net/10292/5413
Metadata
Show full metadata
Abstract
Near-real-time data warehousing defines how updates from data sources are combined and transformed for storage in a data warehouse as soon as the updates occur. Since these updates are not in warehouse format, they need to be transformed and a join operator is usually required to implement this transformation. A stream-based algorithm called X-HYBRIDJOIN (Extended Hybrid Join), with a favorable asymptotic runtime behavior, was previously proposed. However, X-HYBRIDJOIN does not tune its components under limited available memory resources and without assigning an optimal division of memory to each join component the performance of the algorithm can be suboptimal. This paper presents a variant of X-HYBRIDJOIN called Tuned X-HYBRIDJOIN. The paper shows that after proper tuning the algorithm performs significantly better than that of the previous X-HYBRIDJOIN, and also better as other join operators proposed for this application found in the literature. The tuning approach has been presented, based on measurement techniques and a revised cost model. The experimental results demonstrate the superior performance of Tuned X-HYBRIDJOIN.
Keywords
Data warehousing; Tuning and performance optimization; Data transformation; Stream-based joins
Date
2013
Source
Lecture Notes in Computer Science Volume 7808, 2013, pp 494-505
Item Type
Conference Contribution
Publisher
Springer
DOI
10.1007/978-3-642-37401-2_49
Publisher's Version
https://link.springer.com/chapter/10.1007%2F978-3-642-37401-2_49
Rights Statement
An author may self-archive an author-created version of his/her article on his/her own website and or in his/her institutional repository. He/she may also deposit this version on his/her funder’s or funder’s designated repository at the funder’s request or as a result of a legal obligation, provided it is not made publicly available until 12 months after official publication. He/ she may not use the publisher's PDF version, which is posted on www.springerlink.com, for the purpose of self-archiving or deposit. Furthermore, the author may only post his/her version provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at www.springerlink.com”. (Please also see Publisher’s Version and Citation).

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library