Tuned X-HYBRIDJOIN for Near-Real-Time
Data Warehousing

M. Asif Naeem

School of Computing and Mathematical Sciences, Auckland University of Technology,
Private Bag 92006, Auckland 1142, New Zealand
mnaeem@aut.ac.nz

Abstract. Near-real-time data warehousing defines how updates from
data sources are combined and transformed for storage in a data ware-
house as soon as the updates occur. Since these updates are not in
warehouse format, they need to be transformed and a join operator is
usually required to implement this transformation. A stream-based al-
gorithm called X-HYBRIDJOIN (Extended Hybrid Join), with a favor-
able asymptotic runtime behavior, was previously proposed. However,
X-HYBRIDJOIN does not tune its components under limited available
memory resources and without assigning an optimal division of memory
to each join component the performance of the algorithm can be subop-
timal. This paper presents a variant of X-HYBRIDJOIN called Tuned X-
HYBRIDJOIN. The paper shows that after proper tuning the algorithm
performs significantly better than that of the previous X-HYBRIDJOIN,
and also better as other join operators proposed for this application found
in the literature. The tuning approach has been presented, based on mea-
surement techniques and a revised cost model. The experimental results
demonstrate the superior performance of Tuned X-HYBRIDJOIN.

Keywords: Data warehousing, Tuning and performance optimization,
Data transformation, Stream-based joins

1 Introduction

Near real-time data warehousing exploits the concepts of data freshness in tra-
ditional static data repositories in order to meet the required decision support
capabilities. The tools and techniques for promoting these concepts are rapidly
evolving. Most data warehouses have already switched from a full refresh [7] to
an incremental refresh policy [4]. Further the batch-oriented, incremental refresh
approach is moving towards a continuous, incremental refresh approach.

One important research area in the field of data warehousing is data trans-
formation, since the updates coming from the data sources are not in the format
required for the data warehouse. Furthermore, a join operator is required to
implement the data transformation.

In traditional data warehousing the update tuples are buffered in memory
and joined when resources become available [6]. Whereas, in real-time data ware-
housing these update tuples are joined when they are generated in the data

2 M. Asif Naeem

sources. One important factor related to the join is that both inputs of the join
come from different sources with different arrival rates. The input from the data
sources is in the form of an update stream which is fast, while the access rate
of the lookup table is comparatively slow due to disk I/O cost. It creates a
bottleneck in processing of update stream and the research challenge here is to
minimize this bottleneck by optimizing the performance of the join operator.

To overcome these challenges a novel stream-based join algorithm called X-
HYBRIDJOIN (Extended Hybrid Join) [1] was proposed recently by the author.
This algorithm not only addressed the issues described above but also was de-
signed to take into account typical market characteristics, commonly known as
the 80/20 sale Rule [2]. According to this rule 80 percent of sale focus on only 20
percent of the products, i.e., one observes a Zipfian distribution. To achieve this
objective, one component of the algorithm called disk-buffer is divided into two
equal parts. The contents of one part of the disk buffer (called the non-swappable
part) are kept fixed while the contents of the other part (called the swappable
part) are exchanged for each iteration of the algorithm. As the non-swappable
part of the disk buffer always contains the most frequently used disk pages, most
stream tuples can be processed without invoking the disk. Although the author
presented an adaptive algorithm to adopt the typical market characteristics, the
components of the algorithm are not tuned to make efficient use of available
memory resources. Further details about this issue are provided in Section 3.

On the basis of these observations, a revised X-HYBRIDJOIN is proposed
with name Tuned X-HYBRIDJOIN. The cost model of existing X-HYBRIDJOIN
is revised and the components of the proposed algorithm are tuned based on that
cost model. As a result the available memory is distributed among all compo-
nents optimally and consequently it improves the performance of the algorithm
significantly.

The rest of the paper is structured as follows. The related work to proposed
algorithm is presented in Section 2. Section 3 describes problem statement about
the current approach. The proposed solution for the stated problem is presented
in Section 4. Section 5 presents the tuning of the proposed algorithm based on
the revised cost model. The experimental study is discussed in Section 6 and
finally Section 7 concludes the paper.

2 Related work

Some techniques have already been introduced to process the join queries over
continuous streaming data [5]. This section presents only those approaches which
are directly related to the stated problem domain.

A stream-based algorithm called Mesh Join (MESHJOIN) [8] was designed
specifically for joining a continuous stream with disk-based data in an active
data warehouse. This is an adaptive approach but there are some research is-
sues related to inefficient memory distribution among join components due to
unnecessary constraints and an inefficient strategy for accessing the disk based
relation.

Tuned X-HYBRIDJOIN for Near-Real-Time Data Warehousing 3

R-MESHJOIN (reduced Mesh Join) [9] is a revised version of MESHJOIN
that focuses on the optimal distribution of memory among the join components.
The R-MESHJOIN algorithm introduces the new strategy for memory distribu-
tion among the join components by implementing real constraints. However, the
mechanism used for accessing the disk based relation is similar to MESHJOIN.

One approach to improve MESHJOIN has been a partition-based join al-
gorithm [10]. It uses a two-level hash table in order to attempt to join stream
tuples as soon as they arrive, and uses a partition-bases waiting area for other
stream tuples. In this approach the author keeps focus about the analysis of the
stream buffer in terms of back log tuples rather than analysing the performance
of the algorithm.

A recent piece of work introduces a novel stream-based join called HYBRID-
JOIN (Hybrid Join) [11]. The key objective of this effort is to minimize the disk
overhead using an index-based approach and to deal with intermittency in the
stream. Although both issues are successfully addressed in this approach, it is
not optimal with respect to stream data with Zipfian distribution.

3 Preliminaries and problem definition

This section presents a working overview of X-HYBRIDJOIN along with the
research issue. In the field of real-time data warehousing X-HYBRIDJOIN is an
adaptive algorithm for joining the bursty data stream with disk-based master
data. Although the typical characteristics of market data are considered, optimal
settings for the available limited memory resources are not considered. Before
describing the problem it is first necessary to explain the major components of
X-HYBRIDJOIN and the role of each component. Figure 1 presents an abstract
level working overview of X-HYBRIDJOIN where m is the number of partitions
in the queue to store stream tuples and n is the number of pages in disk-based
master data R. Moreover, R is assumed to be sorted with respect to the access
frequency. The stream tuples are stored in the hash table while the join attribute
values are stored in the queue. The queue is implemented using a doubly linked-
list data structure to allow the random deletion of matching tuples. The disk
buffer is used to load the disk pages into memory. To make efficient use of R by
minimizing the disk access cost, the disk buffer is divided into two equal parts.
One is called the non-swappable part which stores a small but most frequently
used portion of R into memory on a permanent basis. The other part of the disk
buffer is swappable and for each iteration it loads the disk page p; from R into
memory.

Before the join process starts X-HYBRIDJOIN loads the most frequently
used page of R into the non-swappable part of the disk buffer. During the join
process, for each iteration the algorithm dequeues the oldest join attribute value
from the queue and using this value as an index it loads the relevant disk page
into the swappable part of the disk buffer. After loading the disk page into
memory the algorithm matches each of the disk tuples available in both the
swappable and non-swappable parts of the disk buffer with the stream tuples

4 M. Asif Naeem

Queue

Queue
= o
Ty e (- Tl
Hash table| %0
e
-
L l - Join
‘,/ Hash\ [y = @ - output
Stream buffer ‘@cﬁon y ‘::> - Stream buffer I
Disk buffer
Disk buffer Hash table for stream
Non- Swappable
swappable Non-swappable part: Non-swappable part
Size=| number of pages Size=k number of pages
0 Join window
Disk-based
master data
R Master data (R)

Size of each p=k number of pages

Fig.l.. X-HYBRIDJOIN working Fig. 2. Memory architecture for Tuned X-
overview HYBRIDJOIN

in the hash table. If the tuple match, the algorithm generates the resulting
tuple as output and deletes the stream tuple from the hash table along with its
join attribute value from the queue. In the next iteration the algorithm again
dequeues the oldest element from the queue, loads the relevant disk page into
the swappable part of the disk buffer and repeats the procedure.

X-HYBRIDJOIN minimizes the disk access cost and improves performance
significantly by introducing the non-swappable part of the disk buffer. But in
X-HYBRIDJOIN the memory assigned to the swappable part of the disk buffer
is equal to the size of disk buffer in HYBRIDJOIN [11] and the same amount
of memory is allocated to the non-swappable part of the disk buffer. In the
following it will be shown that this is not optimal. The problem considered in
this paper is to tune the size of both parts of the disk buffer so that the memory
distribution among these two components is optimal. Once these two components
acquire optimal settings, based on that memory can be assigned to the rest of
join components.

4 Proposed solution

As a solution for the above stated problem, a revised version of X-HYBRIDJOIN
called Tuned X-HYBRIDJOIN is proposed. This section presents the memory
architecture and a revised cost model for the proposed algorithm. Most im-
portantly, the tuning for the proposed algorithm is presented while the tuning
procedure is based on both a measurement strategy and the cost model.

4.1 Memory architecture

The memory architecture that Tuned X-HYBRIDJOIN uses is shown in Fig-
ure 2. From the figure, Tuned X-HYBRIDJOIN includes the same number of
components as X-HYBRIDJOIN however, the memory size for each component

Tuned X-HYBRIDJOIN for Near-Real-Time Data Warehousing 5

is different to that in X-HYBRIDJOIN. In Tuned X-HYBRIDJOIN since mem-
ory is allocated to the each component after executing the tuning module and
therefore, each component is assigned an optimal size of memory. Particulary,
X-HYBRIDJOIN uses same memory for the both swappable and non-swappable
parts of the disk buffer but after tuning it has been explored that the optimal size
of memory for the both components is different. The reason for it is presented
in Section 5.

4.2 Cost calculation

This section revises the cost formulas derived in X-HYBRIDJOIN. The reason for
revising the cost model is that X-HYBRIDJOIN uses equal memory for both the
swappable and non-swappable parts of the disk buffer, and therefore the formulas
do not apply for other relative sizes. Following the style of cost modeling used
for MESHJOIN, the cost for any algorithm is expressed in terms of memory and
processing time. Equation 1 describes the total memory used to implement the
algorithm while Equation 2 calculates the processing cost for w tuples.

Memory cost Since the optimal values for the sizes of both the swappable part
and non-swappable part can be different, it is assumed k& number of pages for
the swappable part and [number of pages for the non-swappable part. Overall
the largest portion of the total memory is used for the hash table while a much
smaller amount is used for each of the disk buffer and the queue. The memory
for each component can be calculated as given below:

Memory for the swappable part of disk buffer (bytes)= k - vp (where vp is the
size of each disk page in bytes).

Memory for the non-swappable part of disk buffer (bytes)=1- vp.

Memory for the hash table (bytes)= a[M — (k + [)vp] (where M is the total
allocated memory and « is memory weight for the hash table).

Memory for the queue (bytes)= (1 —«)[M — (k+1)vp] (where (1 —) is memory
weight for the queue).

The total memory used by the algorithm can be determined by aggregating the
above.

M= (k+1lvp+ oM — (k+1)vp] + (1 —a)[M — (k+1)vp) (1)

Currently the memory reserved for the stream buffer is not included because it
is small (0.05 MB was sufficient in all experiments presented in this paper).

Processing cost This section presents the processing cost for the proposed
approach. The cost for one iteration of the algorithm is denoted by c¢;o0p and
express it as the sum of the costs for the individual operations. Therefore the
processing cost for each component is first calculated separately.

Cost to read the non-swappable part of disk buffer (nanoseconds) = c;,o(l-vp).
Cost to read the swappable part of disk buffer (nanoseconds)= c;,o(k - vp).

6 M. Asif Naeem

Cost to look-up the non-swappable part of disk buffer in the hash table (nanosec-
onds) = dycy (where dy =1 Z—: is the size of the non-swappable part of disk
buffer in terms of tuples, vp is size of disk page in bytes, vy is size of disk tuple
in bytes, and ¢y is look-up cost for one disk tuple in the hash table).

Cost to look-up the swappable part of disk buffer in the hash table (nanoseconds)=
dscy (where dg = k:z—g is the size of the swappable part of disk buffer in terms
of tuples).

Cost to generate the output for w matching tuples (nanoseconds) = w-co (where
co is cost to generate one tuple as an output).

Cost to delete w tuples from the hash table and the queue (nanoseconds)= w-cg
(where cg is cost to remove one tuple from the hash table and the queue).
Cost to read w tuples from stream S into the stream buffer (nanoseconds)= w-cg
(where cg is cost to read one stream tuple into the stream buffer).

Cost to append w tuples into the hash table and the queue (nanoseconds)= w-c4
(where ¢4 is cost to append one stream tuple in the hash table and the queue).
As the non-swappable part of the disk buffer is read only once before execution
starts, it is excluded. The total cost for one loop iteration is:

cloop(secs) = 10_9[61/o(k . ’UP) + (dN + ds)cH + w(co +crg +cs + CA)] (2)
Since in every cjoop seconds the algorithm processes w tuples of stream S, the
performance or service rate p can be calculated by dividing w by the cost for

one loop iteration.
w

3)

‘LL =
Cloop

5 Tuning

The stream-based join operators normally execute within limited memory and
therefore tuning of join components is important to make efficient use of the
available memory. For each component in isolation, more memory would be bet-
ter but assuming a fixed memory allocation there is a trade-off in the distribution
of memory. Assigning more memory to one component means less memory for
other components. Therefore it needs to find the optimal distribution of memory
among all components in order to attain maximum performance. A very impor-
tant component is the disk buffer because reading data from disk to memory is
expensive.

In the proposed approach tuning is first performed through performance
measurements by considering a series of values for the sizes of the swappable and
non-swappable parts of the disk buffer. Later a mathematical model for tuning is
also derived from the cost model. Finally, the tuning results of both approaches
are compared to validate the cost model. The details about the experimental
setup are presented in Table 1.

5.1 Tuning through measurements

This section presents the tuning of the key components of the algorithm through
measurements. In the measurement approach the performance is tested on par-

Tuned X-HYBRIDJOIN for Near-Real-Time Data Warehousing 7

Table 1. Data specification

Parameter [value
Disk-based data

Size of R 0.5 million to 8 million tuples
Size of each tuple vr 120 bytes

Stream data
Size of each tuple vg 20 bytes
Size of each node in queue 12 bytes

Benchmark
Based on Zipf’s law
Characteristics Bursty and self-similar

ticular memory settings for swappable and non-swappable parts rather than on
every contiguous value.

The measurement approach assumes the size of total memory and the size
of R are fixed. The sizes for the swappable and non-swappable parts vary in
such a way that for each size of the swappable part the performance is measured
against a range of sizes for the non-swappable part. By changing the sizes for
both parts of the disk buffer the memory sizes for the hash table and the queue
are also affected.

The performance measurements for varying the sizes of both swappable and
non-swappable parts are shown in Figure 3. The figure shows that the perfor-
mance increases rapidly by increasing the size for the non-swappable part. After
reaching a particular value for the size of non-swappable part the performance
starts decreasing. The plausible reason behind this behavior is that in the be-
ginning when the size for the non-swappable part increases, the probability of
matching stream tuples with disk tuples also increases and that improves the
performance. But when the size for the non-swappable part is increased further
it does not make a significant difference in stream matching probability. On the
other hand, due to higher look-up cost and the fact that less memory is avail-
able for the hash table the performance decreases gradually. A similar behavior
is seen when the performance against the swappable part is tested. In this case,
after attaining the maximum performance it decreases rapidly because of an
increase in the I/O cost for loading the growing swappable part. From the mea-
surements shown in the figure it is possible to approximate the optimal settings
for both the swappable and non-swappable parts by finding the maximum on
the two-dimensional surface.

5.2 Tuning based on cost model

A mathematical model for the tuning is also derived based on the cost model
presented in Section 4.2. From Equation 3 it is clear that the service rate depends
on the size of w and the cost ¢;o0p. To determine the optimal settings it is first
necessary to calculate the size of w. The main components on which the value

8 M. Asif Naeem

x10*
s £
[
&
o £
: £
§ 125 ?
£ g
g g
& 115 [
1
*
See,, 2000
P, 50 T .
Pattory 800 g s Part of master data Master Data on disk Part of master data
sk, 1250 jo pat that exists permanently in memory. thatis loaded into memory
1t 11, 750 1000 . osware the form of parti
) e o™
Fig. 3. Tuning using measurement ap- Fig. 4. A sketch of matching proba-
proach bility of R in stream

of w depends are:- size of the non-swappable part (dy), size of the swappable
part (dg), size of the master data (R;), and size of the hash table (hg).

Typically the stream of updates can be approximated through Zipf’s law with
a certain exponent value. Therefore, a significant part of the stream is joined
with the non-swappable part of the disk buffer. Hence, if the size of the non-
swappable part (i.e. dy) is increased, more stream tuples will match as a result.
But the probability of matching does not increase at the same rate as increasing
dn because, according to Zipfian distribution, the matching probability for the
second tuple in R is half of that for the first tuple and similarly the matching
probability for the third tuple is one third of that for the first tuple and so on [2].
Due to this property, the size of R (denoted by R;) also affects the matching
probability. The swappable part of the disk buffer deals with the rest of the
master data denoted by R’ (where R’ = R; — dy), which is less frequent in
the stream than that part which exists permanently in memory. The algorithm
reads R’ in partitions, where the size of each partition is equal to the size of the
swappable part of the disk buffer dg. In each iteration the algorithm reads one
partition of R’ using an index on join attribute and loads it into memory through
a swappable part of the disk buffer. In the next iteration the current partition in
memory is replaced by a new partition, and so on. As mentioned earlier, using
the Zipfian distribution the matching probability for every next tuple is less than
the previous one. Therefore, the total number of matches against each partition
is not the same. This is explained further in Figure 4, where n total partitions
are considered in R’. From the figure it can be seen the matching probability for
each disk partition decreases continuously as one moves toward the end position
in R.

The size of the hash table is another component that affects w. The reason
is simple: if there are more stream tuples in memory, the number of matches
will be greater and vice versa. Before driving the formula to calculate w it is
first necessary to understand the working strategy of Tuned X-HYBRIDJOIN.
Consider for a moment that the queue contains stream tuples instead of just
join attribute values. Tuned X-HYBRIDJOIN uses two independent inner loops
under one outer loop. After the end of the first inner loop, which means after

Tuned X-HYBRIDJOIN for Near-Real-Time Data Warehousing 9

finishing the processing of the non-swappable part, the queue only contains those
stream tuples which are related to only the swappable part of R, denoted by R’.
For the next outer iteration of the algorithm these stream tuples in the queue
are considered to be an old part of the queue. In that next outer iteration the
algorithm loads some new stream tuples into the queue and these new stream
tuples are considered to be a new part of the queue. The reason for dividing the
queue into two parts is that the matching probability for both parts of the queue
is different. The matching probability for the old part of the queue is denoted by
Porg and it is only based on the size of the swappable part of R i.e. R’. On the
other hand, the matching probability for the new part of the queue, known as
Prew, depends on both the non-swappable as well as the swappable parts of R.
Therefore, to calculate w it is first needed to calculate both these probabilities.

Therefore, if the stream of updates S obeys Zipf’s law, then the matching
probability for any swappable partition & with the old part of the queue can be
determined mathematically as shown below.

dn+kds
T
m:dN-‘r(k—l)ds-‘rl
Pr = =
t

1
xr
r=dy+1

Each summation in the above equation generates a harmonic series, which can

k
be summed up using the formula »_ % = Ink + v + e, where v is a Euler’s
=1
constant whose value is approximately equal to 0.5772156649 and ¢j, is another
constant which is ~ ﬁ The value of ¢, approaches 0 as k goes to oo [3]. In this

paper the value of ﬁ is small and therefore, it is ignored.

If there are n partitions in R’, then the average probability of an arbitrary
partition of R’ matching the old part of the queue can be determined using
Equation 4.

- ()

Pota = n

n
> Pk
k=1

n
Now the probability of matching is determined for the new part of the queue.
Since the new input stream tuple can match either the non-swappable or the
swappable part of R, the average matching probability of the new part of the
queue with both parts of the disk buffer can be calculated using Equation 5.

_ 1
DPnew = PN + ﬁps (5)

where py and pg are the probabilities of matching for a stream tuple with the
non-swappable part and the swappable part of the disk buffer respectively. The
values of py and pg can be calculated as below.

10 M. Asif Naeem

dN Rt
1 1
r= T=anN
= a,nd = —
PN R, . ps R,]
> >y

x=1 =1
Assume that w are the new stream tuples that the alggrithm will load into the
queue in the next outer iteration. Therefore,
The size of the new part of the queue (tuples)=w
The size of the old part of the queue (tuples)=(hg — w)
If w are the average number of matches per outer iteration with both the swap-
pable and non-swappable parts, then w can be calculated by applying the bino-
mial probability distribution on Equations 4 and 5 as given below.

w = (hS - w)ﬁold(]' - Tjold) + wﬁnew(]‘ 71377.610)
After simplification the final formula to calculate w is described in Equation 6.

hsp (1 —7p
w — _ Siiold(7pold) _ (6)
1+ pold(1 - pold) - pnew(l - pnew)

By using the values of w and ¢;40p in Equation 3 the algorithm can be tuned.

5.3 Comparisons of both approaches

To validate the cost model the tuning results based on the measurement ap-
proach are compared with those that are achieved through cost model.
Swappable part: This experiment compares the tuning results for the swap-
pable part of the disk buffer using both the measurement and cost model ap-
proaches. The tuning results of each approach (with 95% confidence interval in
case of measurement approach) are shown in Figure 5 (a). From the figure it is
evident that at every position the results in both cases are similar, with only
0.5% deviation.

Non-swappable part: Similar to before, the tuning results of both approaches
for the non-swappable part of the disk buffer are also compared. The results are
shown in Figure 5 (b). Again, it can be seen from the figure, the results in both
cases are nearly equal with a deviation of only 0.6%. This proves the correctness
of the tuning module.

6 Experimental study

To strengthen the arguments an experimental evaluation of proposed Tuned X-
HYBRIDJOIN is performed using the synthetic datasets. Normally, in Tuned
X-HYBRIDJOIN kinds of algorithms, the total memory and the size of R are
the common parameters that vary frequently. Therefore, the experiments pre-
sented here compare the performance by varying both parameters individually.
Performance comparisons for different sizes of R: This experiment com-
pares the performance of Tuned X-HYBRIDJOIN with the other related algo-
rithms for different sizes of R. Therefore it is assumed that the size of R varies

Tuned X-HYBRIDJOIN for Near-Real-Time Data Warehousing 11

1.5 1.5
Measured
Calculated
1.4 gl 1.4

ot

1
1
750 800 850 ~ 900 950 1000 250 1500 1750 2000
Size of the swappable part of the disk buffer(tuples) Size of the non—swappable part of the disk buffer(tuples)

Measured
Calculated

I
w

Service rate (tuples/sec)
s
N

Service rate(tuples/sec)

I

N
N
b

(a) Tuning Comparison for swappable (b) Tuning Comparison for non-swappable
part: based on measurements Vs based on part: based on measurements Vs based on
cost model cost model

Fig. 5. Comparisons of tuning results

x10°

—— Tuned X-HYBRIDJOIN|

—<— X-HYBRIDJOIN L oM
d —%— HYBRIDJOIN 2.51| —o— HYBRIDIOIN
< B B R-MESHJOIN R-MESHJOIN

— o— MESHJIOIN —&— MESHJOIN

Senvice rate (uples/sec)

10° 05
05 1 2 4 8 50 100 150 200 250
Size of R (million tuples) Total memory (MB)

(a) Size of disk-based relation varies (on (b) Total allocated memory varies
log-log scale)

Fig. 6. Performance comparisons

exponentially while the total memory budget remains fixed (50MB) for all values
of R. For each value of R the performance is measured separately. The perfor-
mance results of this experiment are shown in Figure 6 (a). From the figure it is
clear that for all settings of R the Tuned X-HYBRIDJOIN performs significantly
better than other approaches.

Performance comparisons for different memory budgets: Second experi-
ment analyses the performance of Tuned X-HYBRIDJOIN using different mem-
ory budgets while the size of R is fixed (2 million tuples). Figure 6 (b) depicts
the performance results. From the figure it can be observed that for all memory
budgets the Tuned X-HYBRIDJOIN again performs significantly better than all
approaches. This improvement increases gradually as the total memory budget
increases.

12 M. Asif Naeem

7 Conclusions

This paper investigates a well known stream-based join algorithm called X-
HYBRIDJOIN. Main observation about X-HYBRIDJOIN is that the tuning
factor is not considered but it is necessary, particularly when limited memory
resources are available to execute the join operation. By omitting the tuning fac-
tor, the available memory cannot be distributed optimally among the join com-
ponents and consequently the algorithm cannot perform optimally. This paper
presents a variant version of X-HYBRIDJOIN called Tuned X-HYBRIDJOIN.
The cost model presented in X-HYBRIDJOIN is revised and the proposed algo-
rithm is tuned based on that revised cost model. To strengthen the arguments a
prototype of Tuned X-HYBRIDJOIN is implemented and the performance with
existing approaches is compared.

References

1. Naeem, M. A., Dobbie, G., Weber, G.: X-HYBRIDJOIN for Near-real-time Data
Warehousing. In BNCOD’11: Proceedings of 28th British National Conference on
Databases, pp. 33-47, Springer-Verlag, Berlin Heidelberg, (2011)

2. Anderson, C.: The Long Tail: Why the Future of Business is Selling Less of More.,
2006, Hyperion

3. Milton A., Irene A. S.: Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables., 1964, Ninth Dover printing, Tenth GPO print-
ing, New York.

4. Labio, W. J., Wiener, J. L., Garcia-Molina, H., Gorelik, V.: Efficient resumption
of interrupted warehouse loads. In: SIGMOD Rec., vol. 29, no. 2, pp. 46-57, New
York, NY, USA(2000)

5. Golab, L., Tamer Ozsu, M.: Processing Sliding Window Multi-Joins in Continuous
Queries over Data Streams. In: VLDB’03, pp. 500-511, Berlin, Germany, (2003)

6. Wilschut, A. N., Apers, P. M. G: Dataflow query execution in a parallel main-
memory environment. In: Distrib. Parallel Databases., vol. 1, no. 1, pp. 103-128,
Hingham, MA, USA, (1993)

7. Gupta, A., Mumick, I. S.: Maintenance of Materialized Views: Problems, Tech-
niques, and Applications. In: IEEE Data Engineering Bulletin, vol. 18, pp. 3-18,

2000

8. %Olyzltis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A., Frantzell, N.: Mesh-
ing Streaming Updates with Persistent Data in an Active Data Warehouse. In:
IEEE Trans. on Knowl. and Data Eng., vol. 20, no. 7, pp. 976-991, Piscataway, NJ,
USA(2008)

9. Naeem, M. A., Dobbie, G., Weber, G.: R-MESHJOIN for Near-real-time Data Ware-
housing. In: DOLAP’10: Proceedings of the ACM 13th International Workshop on
Data Warehousing and OLAP, ACM, Toronto, Canada, (2010)

10. Chakraborty, A., Singh, A.: A partition-based approach to support streaming up-
dates over persistent data in an active datawarehouse. In: IPDPS ’09: Proceedings
of the 2009 IEEE International Symposium on Parallel & Distributed Processing,
pp. 1-11, IEEE Computer Society, Washington, DC, USA, (2009)

11. Naeem, M. A., Dobbie, G., Weber, G.: HYBRIDJOIN for Near-real-time Data
Warehousing. In: International Journal of Data Warehousing and Mining (IJDWM),
vol. 7, no.4, IGI-Global, (2011)

