AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enabling Breeding Selection for Biomass in Slash Pine Using UAV-Based Imaging

Song, Z; Tomasetto, F; Niu, X; Yan, WQ; Jiang, J; Li, Y
Thumbnail
View/Open
Journal article (2.257Mb)
Permanent link
http://hdl.handle.net/10292/15128
Metadata
Show full metadata
Abstract
Traditional methods used to monitor the aboveground biomass (AGB) and belowground biomass (BGB) of slash pine (<jats:italic>Pinus elliottii</jats:italic>) rely on on-ground measurements, which are time- and cost-consuming and suited only for small spatial scales. In this paper, we successfully applied unmanned aerial vehicle (UAV) integrated with structure from motion (UAV-SfM) data to estimate the tree height, crown area (CA), AGB, and BGB of slash pine for in slash pine breeding plantations sites. The CA of each tree was segmented by using marker-controlled watershed segmentation with a treetop and a set of minimum three meters heights. Moreover, the genetic variation of these traits has been analyzed and employed to estimate heritability (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>). The results showed a promising correlation between UAV and ground truth data with a range of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:msup><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> from 0.58 to 0.85 at 70 m flying heights and a moderate estimate of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> for all traits ranges from 0.13 to 0.47, where site influenced the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> value of slash pine trees, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> in site 1 ranged from 0.13~0.25 lower than that in site 2 (range: 0.38~0.47). Similar genetic gains were obtained with both UAV and ground truth data; thus, breeding selection is still possible. The method described in this paper provides faster, more high-throughput, and more cost-effective UAV-SfM surveys to monitor a larger area of breeding plantations than traditional ground surveys while maintaining data accuracy.
Date
April 22, 2022
Source
Plant Phenomics, vol. 2022, Article ID 9783785, 14 pages, 2022. https://doi.org/10.34133/2022/9783785
Item Type
Journal Article
Publisher
American Association for the Advancement of Science (AAAS)
DOI
10.34133/2022/9783785
Publisher's Version
https://spj.sciencemag.org/journals/plantphenomics/2022/9783785/
Rights Statement
Copyright © 2022 Zhaoying Song et al. Exclusive Licensee Nanjing Agricultural University. Distributed under a Creative Commons Attribution License (CC BY 4.0).

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library