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Traditional methods used to monitor the aboveground biomass (AGB) and belowground biomass (BGB) of slash pine (Pinus
elliottii) rely on on-ground measurements, which are time- and cost-consuming and suited only for small spatial scales. In this
paper, we successfully applied unmanned aerial vehicle (UAV) integrated with structure from motion (UAV-SfM) data to
estimate the tree height, crown area (CA), AGB, and BGB of slash pine for in slash pine breeding plantations sites. The CA of
each tree was segmented by using marker-controlled watershed segmentation with a treetop and a set of minimum three
meters heights. Moreover, the genetic variation of these traits has been analyzed and employed to estimate heritability (h*).
The results showed a promising correlation between UAV and ground truth data with a range of R* from 0.58 to 0.85 at 70 m
flying heights and a moderate estimate of h” for all traits ranges from 0.13 to 0.47, where site influenced the h* value of slash
pine trees, where h? in site 1 ranged from 0.13~0.25 lower than that in site 2 (range: 0.38~0.47). Similar genetic gains were
obtained with both UAV and ground truth data; thus, breeding selection is still possible. The method described in this paper
provides faster, more high-throughput, and more cost-effective UAV-SfM surveys to monitor a larger area of breeding

plantations than traditional ground surveys while maintaining data accuracy.

1. Introduction

Carbon emissions refer to greenhouse gas emissions that
contribute to the greenhouse effect and global temperature
rise. The largest proportion of greenhouse gases is com-
posed by CO, and is the concentration of CO, in the atmo-
sphere increases and it becomes the main causal factor for
one of the most vital issues in the twenty-first century, i.e.,
global warming [1]. One solution to reduce global warming
is that carbon needs to be sequestered from the atmosphere.
Trees are the simplest, most natural, and environmentally
friendly way for carbon sequestration [2]. It has been
reported that forests can capture 14.1 PgC yr' of CO,
through photosynthesis while releasing 11.6 PgC yr' of
CO, through respiration yielding a positive capture and
storage balance [3]. However, different type of forests could

result in varying abilities of CO, sequestration by forests.
Therefore, in recent years, the ability of trees and forests
to absorb CO, emissions and mitigate climate change has
been of a global concern [4, 5].

Slash pine (Pinus elliottii) is native to the southeastern
United States. With its excellent characteristics, such as rapid
growth, strong adaptability, and high yield of resin, slash pine
has been successfully introduced to southern China since
1930s for afforestation [6, 7]. At present, slash pine plantations
have reached over 3 million hectares in subtropical areas and
have become one of the largest timber and resin production
suppliers in China [8]. Pine plantations have been suggested
to be an important part of global carbon sequestration both
through the accumulation of carbon (C) in wood for long-
lasting products together with an increase in resin yield [6,
9-11]. In addition, moderate resin-tapping intensity in slash
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pine plantations creates an increased carbon sink and does not
cause a limitation in wood carbon allocation for growth [12].
Therefore, slash pine is one of the most important carbon sink
tree species due to its ability to store large amounts of carbon
in its living biomass.

Individual tree biomass monitoring and measurement have
traditionally relied on difficult and costly ground surveys for
collecting tree inventory data that involve destructive sampling
and cover relatively small spatial scales (several hectares).
Therefore, any high-throughput and nondestructive measure-
ments, as a potential biomass indicator that can easily be
applied to biomass crops, would be advantageous. So far, there
are two indirect approaches for tree biomass measurement,
including biomass factor methods and biomass models [13].
Forest inventory information (i.e., diameter, height, or volume
data), as well as various factors alone or in combination with
other factors (i.e., vegetation indices), can be deployed to esti-
mate biomass. High-accuracy estimation of forest carbon stor-
age requires large-scale geographic region inventory data.
Therefore, a national program to estimate individual tree bio-
mass across China was launched in 2009 [14], which included
a special tree biomass model for slash pine. Based on the tree
height and diameter at breast height (DBH), the individual tree
aboveground biomass (AGB) and belowground biomass
(BGB) of slash pine were successfully predicted with mean pre-
diction errors of less than 5% and 7.5%, respectively [15].

The growth traits and biomass of trees vary with and within
families [16]. Breeding is able to exploit these variations for
optimal trait selection [17]. Biomass, especially AGB, has been
identified as the most important trait to exploit in tree breeding
programs for the high production of biomass plantations to
mitigate the effects of climate change. Genetic variations in
growth traits, adaptability, resin, and wood productivity in
slash pine have been extensively reported [18-21].

One of the most important steps in breeding programs is
the transformation in detail and speed of genetic information
that is then brought to the next generation [22]. Traditionally,
tree height and diameter are measured manually with gradu-
ated poles and measuring tapes, which is time- and labor-
consuming and difficult for tall trees in complex terrains
[23]. Remote sensing is an efficient technique for measuring
tree crops and has the capability of providing multitemporal
information on tree structure. Recently, unmanned aerial
vehicles (UAVs) equipped with LiDAR or RGB imagery have
been demonstrated to work very well in forestry [24-26].
Compared to RGB imagery, UAV-based LiDAR holds the
advantage of obtaining point cloud data and achieves relatively
high accuracy [27]. Still, LIDAR equipment is very expensive
and has limitations in low efficiency and complicated opera-
tions, making it unsuitable for routine operations in a large-
scale forest [28]. Alternatively, a low-cost UAV-based RGB
digital camera equipped with a real-time kinematic position-
ing system (RTK) can also generate 3D point cloud data with
high accuracy in a relatively sparse forest [29, 30]. UAV-based
RGB imagery has been successfully applied to numerous coni-
fer forests for tree growth measurements [30, 31]. Previously,
study has been shown that UAV-multispectral platforms
could serve as an rapid method for breeding selection of vege-
tation indices in slash pine trees [32]. However, prior to this
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project, UAV-based RGB imagery has not been employed in
slash pine plantations for breeding purposes.

UAV-based RGB imagery with an RTK system is able to
obtain photogrammetric images by overlapping photographs
with the SfM method to produce 3D georeferenced points,
which are further separated into a digital terrain model
(DTM) and a digital surface model (DSM) for crop height
model (CHM) computation. Further analysis of the CHM
allows the estimation of tree height, DBH, CA, and biomass
to be employed in breeding programs [33]. Flight altitude
influences the accuracy of UAV-based photogrammetric data
if other factors, such as the UAV platform (multirotor fixed-
wing), camera specification, and air conditions, are fixed. High
altitude requires much less capture time than low altitude
scarifying image resolution and resulting in a low density of
point clouds [34]. Therefore, how the changes in UAV flying
altitude influence the quality of 3D georeferenced points
should be clarified.

Hence, this study evaluated the use of UAV-based images
in a slash breeding plantation with four main objectives: (1) to
assess tree heights and CA from the CHM generated with
images captured from a low-cost high-resolution camera; (2)
to determine the influence of different flying altitudes on the
3D georeferenced point cloud quality and its accuracy of tree
height and CA estimations; (3) to estimate the DBH and bio-
mass (AGB and BGB) by combining CHM-based height and
CA data; and (4) to compare the genetic gains from UAV
and ground truth data to demonstrate the capabilities of
UAV-obtained biomass for slash pine breeding.

2. Materials and Methods

2.1. Study Area and Tree Materials. The experiment was car-
ried out based on slash pine progeny trials in the Matou
National Forest Farm in Xuancheng, Anhui, China (30°
45" N, 118> 29 E). This region has a subtropical temperate
monsoon humid climate, and the average temperature and
precipitation are 15.7°C and 1,520mm annually, respec-
tively. Seeds from 20 open-pollinated families were collected
in 2011 and planted in a nursery. In 2013, 1-year-old seed-
lings were planted systematically using an alpha lattice
incomplete block and single-tree-plot design at two sites.
Each block contained 20 trees with a 2m x3m spacing.
Each tree represented one family, with no repeated family
within a block. In total, there were 560 individual trees.
The altitude in site 1 is ~10m higher than site 2p; there
are 257 and 303 living trees in site 1 and site 2, respectively.

2.2. UAV Image Acquisition and Field Data. A low-cost UAV
with an in-built high-resolution RGB sensor was employed
for individual tree structural characteristic detection and
measurement of slash pine in China. Meanwhile, the ground
truth tree height and DBH data were measured for valida-
tion. Details of the workflow can be found in Figure 1.
During a sunny day without clouds and light winds on
12 July 2021, three completed cross-hatched flights were
performed at 35m, 45m, and 70m altitudes, respectively,
using the low-cost drone DJI Phantom 4 RTK (D]JI, Shenz-
hen, Guangdong, China) equipped with a high-definition
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FiGure 1: Workflow used to evaluate the potential usage of UAV-SfM-based methods to estimate above- and belowground biomass of slash
pine breeding plantations at Matou National Forest Farm, Jing County, Xuancheng City, Anhui Province, China.

camera (20 million pixels). Coordinate correction via the net-
work RTK (NRTK) service was deployed. The horizontal and
vertical positioning errors were 0.03m and 0.06 m, respec-
tively. The sensor captured images in jpeg format; image
dimensions were set to 3:2, and the overhead trajectory of
UAYV operation had an 80% longitudinal and lateral overlap
to meet the accuracy requirements. DJI GS Pro software (ver-
sion 2.0.15; Shenzhen, China) for Apple iOS was used for all
image collection. In total, 2,251 images covering an area of
41,000 m* were collected with a 2.5h in-air flight time. The
flight settings are shown in Table 1. Based on the map of the
breeding plantation and for ground-truth purposes, we ran-
domly selected 100 trees to measure tree height and DBH
and recorded the tree site, block, and family information.

2.3. UAV Image Processing. The original raw images with
georeferenced information were analyzed through structure
from motion (SfM) photogrammetry to generate georefer-
enced 3D dense cloud points of the slash plantation at three
altitudes in DJI Terra software (version 3.0.4, Shenzhen,
China). The overall methodology involved was canopy height
model (CHM) 3D point clouds and 2D raster images were
normalized by subtracting the DTM from the original point
cloud and then analyzed to detect individual tree locations,

TaBLE 1: UAV parameter settings.

UAV flight information

UAYV flying altitude (m) 35 45 70
Flying time (min) 45.35 42.47 17.56
No. of images 1156 926 469
Point cloud density (points/m®) ~ 435.83  254.77 99.2
Ground sampling distance (cm) 1.37 1.62 2.74
Velocity (m/s) 39 39 2.0
Shooting mode Timed  Timed  Timed

crown areas, and heights using a local maximum variable
window function [33]. The three-dimensional reconstruction
clarification quality was set as high as possible. Finally, the
3D cloud points were exported as LAS files and used in R ver-
sion 4.0.1 software [35] for further processing. The X-, Y-,
and Z-coordinate attributes of the cloud points were loaded
in R software and used to process the classification of ground
points using Cloth Simulation Filter (CSF) algorithms [36]
in the lidR package [37]. Then, based on the classification
of ground points and the spatial interpolation algorithm
(k-nearest neighbor (KNN) approach with inverse-distance



weighting (IDW)), digital terrain models (DTMs) with a
0.5m resolution at three different altitudes were generated.
Subsequently, each CHM was investigated to identify the
local maximum heights by using a variable diameter of
the moving window (Equation (1)) to assign the locations
(x and y coordinates), CA, and minimum height (m) of the
tree >2.6 m.

Vwr = H x 0.05 + 2.6, (1)

where Vwr refers to the variable window radius and H is the
tree height.

The dalponte2016 function [38] in the lidR package was
deployed for individual tree segmentation and polygons gen-
eration. This method is mainly based on the treetops with a
minimum height of 2.6 m and a maximum crown diameter
of 5m. These parameters were chosen to avoid confusion
with neighboring trees when running segmentation ensuring
that all of the trees have been detected. As a postprocessing
step, the detected individual trees with an ID number were
converted to a 2D convex hull to generate tree crown poly-
gons; tree height and crown area information of each indi-
vidual tree were extracted using raster [39] and tidyverse
packages [40]. Each tree with ID number was manually
matched with the site, block, and family information.

2.4. Statistical Analysis

2.4.1. DBH Prediction Model. DBH has a strong positive
correlation with tree height and CA [41]. Therefore, it is
possible to use tree height and CA as predictor variables
for estimating DBH. Since the relationship among DBH, tree
height, and CA does not exactly follow a linear correlation
[42], a nonlinear generalized additive model (GAM) [43]
has been applied [44, 45]. The measured ground truth of
100 tree DBH and height data was used for validation. The
GAM equation is

DBH = a + f) eighe) +fa(ca) + & (2)

where DBH is the response variables, a is the intercept, f; and
f, are smooth functions of covariates for the i, independent
of height and CA variables, and ¢ is a vector of unobserved
random errors. The restricted maximum likelihood (REML)
was taken as the smoothing parameter estimation method.

2.4.2. AGB and BGB Calculation. The estimation of AGB (kg)
and BGB (kg) for slash pine presented by Fu et al. [15] was
adopted in this paper. The equations are listed as follows:

M, =0.0861D*?H**2 1 0.002, (3)

M, =0.0269D****H° +0.058, (4)

where M, and M, are the aboveground and belowground
biomass, respectively, and D and H are the tree DBH and
height, respectively.

2.4.3. Estimation of Genetic Parameters. A restricted maxi-
mum likelihood (REML) bivariate linear mixed model was
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fitted for tree growth and biomass generated from UAVs
to estimate the genetic parameters for breeding evaluation.
Details have been reported by Li et al. [46]. Briefly, model
(5) is shown as:

y=Xm+Zb+2Z,f +e, (5)

where y represents the response vector of tree traits and X,
Z,, and Z, are the incidence matrices linking observations
to the appropriate effects. Consequently, m, b, f, and e are
the vectors of intercept, site effects, and the vectors of ran-
dom additive effects for block, family, and residual effects,
respectively. We used variance components from the model
to estimate the narrow sense of 4> and genetic correlation
(rgl-]-) between each trait. At each site, breeding values were
considered to calculate the genetic gain (AGR) by subtract-
ing the mean breeding values of selected top ratio tree
growth traits from the total mean of the tree growth trait
and subsequently estimating the difference between them.
Equation (6) and Equation (7) show the relationship
between h* and T gij-

2
12— 2.50%; 6
62 402 402 )
fi b; ¢
o= i )
gij > 5’
9%.9%,

where G]%i, o1, ando? are the family, block, and residual var-
iance for traiti, respectively. a%_ is the family variance for
J

trait j, and o; is the estimated family covariance between
trait i and trait j.

All analyses were accomplished with R software by using
the RStudio platform [47]. The gam package [48] was used
for GAM model fitting, the sommer package [49] was
employed for genetic variance and covariance estimations,
and the ggplot2 package [50] was harnessed for visualization.

3. Results

3.1. Canopy Height Model Computation and Individual Tree
Detection. The examples of RGB orthomosaics, DSMs,
DTMs, and CHMs generated from 3D point clouds from
UAV-SfM at 70 m altitude flight are shown in Figure 2 with
an average pixel resolution of 0.5m. The tree UAV_CA and
treetop of all of the target trees from the two sites were suc-
cessfully delimited at flight altitudes of 35, 45, and 70m
(Figure 3).

Comparing images of the point cloud during different
collection flight altitudes, the number of point cloud at
45 m is significantly larger than the point cloud density gen-
erated at 35 m and 70 m (Figure S1). Trees grew better in the
low-altitude area than in the higher-altitude area (Figure 3).
However, tree height, UAV_CA, and biomass (UAV_AGB
and UAV_BGB) data generated from CHMs at different
flight altitudes did not show significant differences (Table 2
and Figure SI).
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FIGURE 2: Images of the study area derived from UAV data: (a) orthomosaic image; (b) digital surface model; (c) digital terrain model; and

(d) canopy height model.

3.2. Tree Growth Traits and Biomass (AGB and BGB)
Estimation Assessment. The relationship between predicted
and measured values of traits such as actual ground truth
(GT) and UAV-StM (UAV) height, DBH, AGB, and BGB
values generated at 70 m flight altitude showed relatively prom-
ising results (Figure 4 and Figure S2). The tree heights measured
and predicted at flight altitudes of 35, 45, and 70 m exhibited the
highest R? values of 0.85, 0.86, and 0.85, respectively, with the
lowest RMSEs of 0.36, 0.4, and 0.4, respectively (Figure S2),
followed by the AGB, DBH, and BGB traits. The estimated
AGB and BGB based on the UAV-SfM data in the breeding
plantations were consistently lower (~30%) than the values gen-
erated from the ground truth data (Figure 5).

3.3. Family Ranking and Heritability of Growth Traits and
Biomass Properties at Two Sites. The predicted DBH (PRE_
DBH), crown area (UAV_CA), tree height (UAV_H), above-

ground biomass (UAV_AGB), and belowground biomass
(UAV_BGB) generated from 70m altitude UAV-SfM data
were considered for the final genetic variation analysis. Most
of the families showed to have consistent rankings in all traits
for the two sites, which indicates that it is possible to select
families with good growth and biomass traits using genetic
selection (Figure 6). The heritability (h?) of all traits at each
site and their combined yield ranged from 0.13 to 0.47. The
total h* for all sites generated a promising h* for all traits, with
a range from 0.3 to 0.37. All traits generated lower h* values of
all traits (range: 0.13-0.25) at site 1 than at site 2 (range: 0.38-
0.47). The highest h? values at site 1, site 2, and all sites com-
bined were for UAV_H (h?® = 0.45), PRE_DBH (h* = 0.47),
UAV_AGB (h* =0.39), UAV_BGB (h* =0.38), and UAV_
CA (h* = 0.43), respectively. The UAV_BGB generates lower
heritability at site 1, site 2, and all sites combined (Figure 7).
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FIGURE 3: The heterogeneous profile of heights from three different flight altitudes (30 m(a), 45 m(b), and 70 m(c)) measured using the
UAV-SfM method. The canopy height model (CHM) shows individual treetop locations (black dots) and associated tree crown
perimeter (colored area). Different colors represent different tree heights.

TaBLE 2: The results of multiple UAV flight altitudes (35, 45, and 70 m) based on the standard deviation between the collected tree height,
DBH, CA, AGB, and BGB. Significant differences (a = 0.05) were assessed for collection information using Tukey’s HSD test. Values inside
the parenthesis are standard errors.

Height (m)

DBH (cm)

CA (m?)

AGB (kg) BGB (kg)

Flying altitude (m)

35 767 (£1.22)a 18.80 (+4.70)a
45 7.76 (£1.21)a 18.95 (+4.72)a
70 7.75 (£1.24)a 18.93 (+4.79)a

13.86 (+3.86)a
13.83 (+3.83)a
13.79 (+3.85)a

101.42 (+73.80)a
103.53 (£74.56)a
103.67 (£77.23)a

33.95 (£27.06)a
34.58 (£27.27)a
34.64 (+28.30)a

3.4. Genetic Correlations between Traits and Family
Selection. Table 3 shows the estimated genetic correlations
between different traits at site 1 and site 2. All traits showed
a high genetic correlation at both sites. The GT_AGB and
GT_BGB have a significant genetic correlation with UAV_
AGB and UAV_BGSB in both sites, with a range of Ty from
0.63 to 0.93. The UAV_AGB and UAV_BGB have high
genetic correlations with UAV_H (rg =0.99 and 0.99 at site
1 and r;=0.79 and 0.75 at site 2, respectively) and PRE_
DBH (rg =0.97 and 0.96 at site 1 and ry=0.98 and 0.96 at

site 2, respectively). Genetic correlations were moderately

high between UAV_CA and UAV_H (rg =0.77 at site 1

and r, =0.68 at site 2). High positive genetic correlation
indicates that there is potential for selecting families with

multiple optimal traits together. According to different
breeding goals, families with optimal breeding values of mul-
tiple traits may be selected. The UAV_AGB and UAV_BGB
have a significant positive genetic correlation (1 in all sites).
Therefore, the large CA and high AGB and BGB are shown
in Figure 8, and the breeding values that are higher than the
mean UAV_AGB and UAV_CA are shown in the first quad-
rant. In addition, optimal families with high UAV_H, PRE_
DBH, UAV_AGB, UAV_BGB, and UAV_CA were found,
including families 1, 6, 8, 9, 11, 12, 16, 18, and 20 at site 1
and families 6, 9, 10, 16, 18, and 19 at site 2, in which fam-
ilies 6, 9, 16, and 18 show high breeding values at both sites.

3.5. Genetic Gains. The realized genetic gains were calculated
by selecting the top 10, 20, and 30% of the families for each
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FIGURE 5: Significant differences between ground truth and UAV-generated aboveground and belowground biomass from 70 m flight
altitudes. UAV_AGB: UAV-generated aboveground biomass; UAV_BGB: UAV-generated belowground biomass; GT_AGB: ground truth
aboveground biomass; GT_BGB: ground truth belowground biomass; ***p < 0.001, **x* *p < 0.0001.
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FIGURE 6: Visualization of differences in breeding value for slash pine for each trait (UAV_H, PRE_DBH, UAV_CA, UAV_AGB, and UAV_
BGB and genetic correlation) between two different sites, ns: no significance (p > 0.05).
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F1GURE 7: Estimates of h* for growth and biomass traits at two sites.

trait (Figure 9). All traits showed an overall higher genetic
gains at site 2 than at site 1. In particular, the UAV_AGB
and UAV_BGB genetic gains at site 2 were ~5 times higher
than the genetic gains at site 1. The genetic gain of ground
truth AGB and BGB are similar to the UAV generated
AGB and BGB in both sites, respectively.

4. Discussion

To the best of our knowledge, limited research regarding the
prediction of slash pine attributes for breeding selection
using remote sensing techniques is available. First, we dem-
onstrated the ability of UAV-based imagery (in this case
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TaBLE 3: Genetic correlations (below diagonal) between traits at the two sites, with standard errors shown in parentheses.

Traits UAV_AGB UAV_BGB UAV_CA UAV_H PRE_DBH GT_AGB

Site 1

UAV_BGB 1.00 (+0.00)

UAV_CA 0.61 (+0.24) 0.59 (+0.25)

UAV_H 0.99 (+0.06) 0.99 (+0.07) 0.77 (+0.18)

PRE_DBH 0.97 (+0.02) 0.96 (+0.03) 0.78 (+0.15) 1 (+0.03)

GT_AGB 0.71 (0.13) 0.69 (£0.14) 0.67 (+0.15) 0.76 (+0.11) 0.73 (£0.12)

GT_BGB 0.62 (+0.16) 0.60 (£0.13) 0.61 (+0.16) 0.67 (+0.14) 0.64 (0.15) 0.99 (+0.01)

Site 2

UAV_BGB 1.00 (£0.00)

UAV_CA 0.9 (+0.07) 0.90 (0.07)

UAV_H 0.79 (+0.11) 0.75 (+0.13) 0.68 (+0.15)

PRE_DBH 0.98 (+0.01) 0.96 (+0.02) 0.92 (+0.05) 0.87 (+0.07)

UAV_R 0.89 (+0.07) 0.89 (+0.08) 1.00 (+0.00) 0.69 (+0.15) 0.92 (+0.05)

GT_AGB 0.93 (+0.06) 0.93 (+0.06) 0.84 (£0.13) 0.86 (+0.10) 0.94 (+0.05)

GT_BGB 0.90 (+0.08) 0.91 (+0.07) 0.88 (+0.11) 0.81 (+0.14) 0.92 (0.07) 0.99 (+0.01)

UAV-SfM data) to estimate tree growth traits, AGB, and
BGB of slash pine in a breeding plantation [30, 51]. In this
context and regarding LiDAR technology [52, 53], Kuyah
et al. [54] found that UAV-derived LiDAR yields are slightly
better estimated than yields from UAV imagery for tree
height measurements, but the cost of LIDAR is much higher
than UAV imagery [55]. Therefore, in this study, low-cost
UAV-based imagery was chosen for the creation of ortho-
mosaic images to generate CHMs for slash pine plantations
at three flight altitudes. Furthermore, a high correlation
was found between the UAV-SfM estimated and the ground
truth measures of tree height, DBH, CA, AGB, and BGB.

4.1. Comparison between UAV-SfM and Field Data-Derived
Metrics. The flight altitudes of 35m, 45m, and 70 m gener-
ated tree growth traits with relatively high prediction accu-
racy and did not show a significant difference based on the
tree growth traits, AGB and BGB yields. However, the flight
time at 70 m is significantly less than the flight time at the
other two altitudes, with only 17.56 minutes compared to
4535 minutes at 35m and 42.47 minutes at 45m
(Table 1). Similar results were reported by Avtar et al. [56],
who found that (1) the CA derived at flight altitudes of
20m, 60m, and 80 m vyields a similar correlation with the
ground truth of young oil palm (Elaeis guineensis); (2) tree
heights derived from 60 m and 80 m flights showed slightly
higher correlations with ground truth data than those
derived from the 20m flight altitude. Moreover, Sadeghi
and Sohrabi [57] found that a higher flight altitude (80-
140m) yielded more accurate height measurements than a
lower flight altitude. Surovy et al. [58] also found that higher
flight altitude indicates better forestry inventory results and
requires less time than a lower flight altitude for the collec-
tion of image data and computer processing.

The manual assessment of tree heights, CA, and DBH
is time-consuming and suitable for only a small portion
of forest fields. Here, the high-throughput phenotyping

method UAV-based imaging was applied to estimate the
canopy height and CA. All 560 trees in the field were
detected using the UAV-SfM methods. This value is more
accurate than the values of other studies with the same
methods for tree detection from SfM-derived products in
high-tree density forests [59, 60]. This high level of estima-
tion is highly accepted for forestry and biomass inventories
in plantations with low tree densities when only the tree
height and CA are considered.

In this study, the UAV-SfM-derived CHMs was highly
correlated with the ground truth measurements (Figure 4).
With the onboard RTK systems, the UAV-SfM data yielded
reliable results when generating DTM and DSM, which
resulted in a high accuracy of tree height, with R* and RMSE
values ranging from 0.85 to 0.86 and 0.36 to 0.40 m, respec-
tively. UAV-SfM has also been successfully applied to other
canopy height measurements, such as Eucalyptus [61], Pinus
pinea [62], and oil palm (Elaeis guineensis) [63] measure-
ments, and has achieved high accuracy, with an R* larger
than 0.8.

In our study, the DBH prediction was less accurate, with
a mean R* and RMSE of 0.64 and 2.60 cm, respectively, from
three flight altitudes. These results are consistent with the
study reported by Zhou et al. [64], who found that the high-
est R? and RMSE for DBH were 0.66 and 1.97 cm, respec-
tively, when using 12 traditional DBH estimation models.
The UAV-SfM technology can be easily used to detect the
tree height and crown, but can rarely be used to derive the
DBH [40]. The less accuracy of DBH estimations highly
affects the prediction of AGB and BGB yields, which leads
to a mean R* and RMSE being 0.69 and 19.70kg for AGB
and 0.59 and 14.26 kg for BGB, respectively, Those results
were also similar to Jones et al. [51], who also found that
UAV image-based measurements provide poor prediction
of DBH and consistently affected the estimate of biomass
yields. Our results showed that UAV-SfM-estimated AGB
is approximately 30% lower than those generated from



10 Plant Phenomics
Sitel Site2
_ DS
) <® 9
< ? 10
3 2 *
Z 10 9 h
:I) | ‘QO
>
m
2 -
T T T T T
-10 -5 0 5 -20 0 20
BV-UAV_AGB (AU)
& <= Mean (UAV_H) PRE_DBH < = mean
€ > Mean (UAV_H) @® PRE_DBH > mean
Sitel Site2

7] ’09 19
=)
= ® 1
= * o 6
o 12* }
O "SI 16 &

ok 0 1 A
S 5 320
| 14
>
/M

-2 1
-1.0 -0.5 0.0 0.5 -2 -1 0 1 2

BV-PRE_DBH (AU)

& UAV_AGB < = mean
¢ UAV_AGB > mean

UAV_BGB < = mean
@® UAV_BGB > mean

FiGURE 8: The correlation between DBH and the genetically related breeding values of the UAV predicted height, AGB, and BGB at the two
different sites. BA-UAV_CA: breeding value of crown area; BA-PRE_DBH: breeding value of diameter at breast height; BA-UAV_AGB:

breeding value of aboveground biomass.

ground data, which are larger than AGB estimated by
Navarro et al. [65], who found that the AGB estimated by
UAV-SfM is only 10-20% less than that estimated with the
ground data. However, our result is still reliable and compa-
rable to results obtained using LiDAR systems, which have
an R? of 0.702 for AGB but more expensive [66].

The genetic gain of AGB and BGB both generated from
UAYV and ground truth data from two sites yields a similar
result with different selection ratio (Figure 9) highlighting
that the UAV-SfM technology can be suitable for tree breed-
ing selection.

In the literature, more attention has been paid to the
aboveground biomass and less to the belowground biomass
analysis. Under the optimal portioning hypothesis mentioned
by Bloom et al. [67] and Chapin et al. [68], plants allocate bio-
mass in different parts of the plant under different environ-
mental conditions. This is to maximize their ability to store

water, light, and nutrients obtained for optimal growth rate.
More biomass is gained in the root system in low nutrient or
low water conditions but more biomass is gained in the leaves
when high nutrient or high water conditions occurs [69]. The
belowground biomass is as important as the aboveground bio-
mass, and both are the central issues in plant ecology [70].
The tree BGB is usually measured through the roots and
shoots. Due to the intrinsic difficulty of measuring the root
system, BGB can be predicted by tree height and DBH [71].
For instance, Varik et al. [72] successfully used only DBH to
predict the coarse root biomass in silver birch (Betula pendula
Roth) (R? = 0.89), which is higher than our results. However,
the methods that they adopted was not only cost- and time-
consuming, but also destructive sampling which is not suitable
for high-throughput and rapid estimation. Furthermore, BGB
estimation in different tree species model accuracies may vary.
Here, we used the slash pine biomass allometric equation
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provided by Fu et al. [15] and yielded a promising result for
further analysis. To the best of our knowledge, there is limited
literature that assesses BGB by using the UAV-SfM method,
which has not been used for breeding selection.

4.2. Genetic Variation in Tree Growth Traits and Biomass
Yield. Determining genetic variability in growth trait yield by
using UAV technology has been reported previously. Solvin
et al. [73] reported that the UAV-estimated tree height is suf-
ficient for breeding purposes in Norway spruce (Picea abies
L. Karst; h2=0.19 ~ 0.28). Similarly, Liziniewicz et al. [74]
reported a broad-sense estimate of heritability ranging from
0.21 to 0.30 for tree height and DBH at different ages of
Norway spruce using UAV technology. In our study,
instead, #* on tree growth traits is relatively higher (from
0.13 to 0.47). Few studies have used UAV technology to
estimate biomass genetic variation. Our results showed that
relatively low h* values of AGB and BGB that ranged from
0.14 to 0.15 were found at site 1, and moderate 4> values
ranging from 0.32 to 0.33 were found at site 2, which are
lower than the values reported by Aranda et al. [75]. They
found that tree AGB and BGB have high narrow-sense her-
itability values ranging from 0.77 to 0.99 when using tradi-
tional methods in Pinus pinaster Ait. populations.

In our study, the site influences have occurred because 1’
values at site 1 are all lower than those at site 2 (in a small

gully), different to the study reported by Li et al. [76] and
Berlin et al. [77], who reported that the growth traits were
highly influenced by the G x E interaction. The location is
also an important factor that largely favored genetic gains
for growth and biomass traits. Altitude and unbalanced tree
numbers in these two sites cause the difference in genetic
gain. However, despite the differences in sites, there was no
G x E interaction in this study.

Heritability is overestimated in controlled environments
compared with natural conditions [78]. Regular estimation
of heritability of half-sibling tree families uses 1/4 as rela-
tionship coefficient. Here, we used a relationship coeflicient
of 1/2.5 to estimate the heritability of half-sibling slash pine
families (Equations (6)), leading our h* values to be lower
than the h* values of previous studies. Due to the limited
information on the population structure and reproductive
biology of slash pine, the genetic structure of the pine popu-
lation is complex (Xiao-Fei et al. [79]). However, the moder-
ate h* and relatively consistent within families in our sites
(Figure 7) showed that breeding selection for tree growth
traits and biomass yield maybe possible and reliable. Based
on the breeding values, families with high AGB and BGB
coupled with optimal growth traits were selected for breed-
ing targets. In our case, the ground truth of AGB and BGB
yields a similar genetic gain with the UAV generated AGB
and BGB at different selection ratio in both sites, indicating
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that, for breeding selection, the use of the data from UAV
technology may be possible and reliable.

5. Conclusions

In this paper, we showed that a low-cost UAV-SfM method
is a promising, accurate, and high-throughput method for
assessing the growth traits, aboveground and belowground
biomass of slash pine for breeding purposes. The tree height
and CA metrics generated from UAV-SfM data had a high
correlation with the ground truth data. The heritable varia-
tions in growth traits, AGB and BGB were significant, and
the optimal families were selected for further breeding use.
This method debuts the possibility of repeatable UAV
surveys by providing a faster and cost-effective approach for
monitoring tree growth monthly or annually over larger areas
and enhances breeding programs in comparison to traditional
ground surveys.
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