Repository logo
 

Text Analysis for Depression Detection: Mental Health Digital Transformation

aut.relation.endpage1949
aut.relation.journalStudies in Health Technology and Informatics
aut.relation.startpage1948
aut.relation.volume329
dc.contributor.authorMadanian, Samaneh
dc.contributor.authorGao, Yuan
dc.date.accessioned2025-08-21T03:14:41Z
dc.date.available2025-08-21T03:14:41Z
dc.date.issued2025-08-07
dc.description.abstractDepression is a pervasive mental health disorder affecting millions globally. The rise of social networks and their digital footprint provides a unique avenue to leverage AI for early identification of users who may be suffering. We built upon BERT for feature extraction from individual user posts, followed by a Convolutional Neural Network for classification. Since the pre-trained BERT model may not effectively capture social media language, we propose an approach to pre-train BERT on Reddit data before integrating it into the BERT+CNN architecture.
dc.identifier.citationStudies in Health Technology and Informatics, ISSN: 0926-9630 (Print); 0926-9630 (Online), IOS Press, 329, 1948-1949. doi: 10.3233/SHTI251293
dc.identifier.doi10.3233/SHTI251293
dc.identifier.issn0926-9630
dc.identifier.issn0926-9630
dc.identifier.urihttp://hdl.handle.net/10292/19709
dc.languageeng
dc.publisherIOS Press
dc.relation.urihttps://ebooks.iospress.nl/doi/10.3233/SHTI251293
dc.rights© 2025 The Authors. This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
dc.rights.accessrightsOpenAccess
dc.subjectAI
dc.subjectDepression
dc.subjectDigital Health
dc.subjectDigital Mental Health
dc.subjectNLP
dc.subjectAI
dc.subjectDepression
dc.subjectDigital Health
dc.subjectDigital Mental Health
dc.subjectNLP
dc.subject46 Information and Computing Sciences
dc.subject4608 Human-Centred Computing
dc.subjectMental Illness
dc.subjectPrevention
dc.subjectMental Health
dc.subjectDepression
dc.subjectBehavioral and Social Science
dc.subjectBrain Disorders
dc.subjectMachine Learning and Artificial Intelligence
dc.subjectMental health
dc.subject3 Good Health and Well Being
dc.subject0807 Library and Information Studies
dc.subject1117 Public Health and Health Services
dc.subjectMedical Informatics
dc.subject4203 Health services and systems
dc.subject4601 Applied computing
dc.subject.meshData Mining
dc.subject.meshDepression
dc.subject.meshHumans
dc.subject.meshMental Health
dc.subject.meshNatural Language Processing
dc.subject.meshNeural Networks, Computer
dc.subject.meshSocial Media
dc.subject.meshHumans
dc.subject.meshSocial Media
dc.subject.meshDepression
dc.subject.meshNeural Networks, Computer
dc.subject.meshMental Health
dc.subject.meshNatural Language Processing
dc.subject.meshData Mining
dc.subject.meshHumans
dc.subject.meshDepression
dc.subject.meshMental Health
dc.subject.meshNatural Language Processing
dc.subject.meshData Mining
dc.subject.meshSocial Media
dc.subject.meshNeural Networks, Computer
dc.subject.meshHumans
dc.subject.meshSocial Media
dc.subject.meshDepression
dc.subject.meshNeural Networks, Computer
dc.subject.meshMental Health
dc.subject.meshNatural Language Processing
dc.subject.meshData Mining
dc.titleText Analysis for Depression Detection: Mental Health Digital Transformation
dc.typeJournal Article
pubs.elements-id624668

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Text analysis for depression detection.pdf
Size:
232.21 KB
Format:
Adobe Portable Document Format
Description:
Journal article