IoT Integration of Failsafe Smart Building Management System
Date
Authors
Supervisor
Item type
Journal Article
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI AG
Abstract
This research investigates the energy consumption of buildings managed by traditional Building Management Systems (BMSs) and proposes the integration of Internet of Things (IoT) technology to enhance energy efficiency. Conventional BMSs often suffer from significant energy wastage and safety hazards due to sensor failures or malfunctions. These issues arise when building systems continue to operate under unknown conditions while the BMS is offline, leading to increased energy consumption and operational risks. The study demonstrates that integrating IoT systems with existing BMSs can substantially improve energy efficiency in smart buildings. The research involved designing a system architecture prototype, performing MATLAB simulations, and a real-life case study which revealed that IoT devices are effective in reducing energy waste, particularly in Heating, Ventilation, and Air Conditioning (HVAC) systems and lighting. Additionally, an auxiliary bypass system was incorporated in parallel with the IoT system to enhance reliability in the event of IoT system failures. Preliminary findings indicate that the integration of IoT systems with traditional BMSs significantly boosts energy efficiency and safety in smart buildings. Simulation results reveal an hourly average power savings of 36.8 kw with the integrated failsafe model for all scenarios. This integration offers a promising solution for advancing energy management practices and policies, thereby improving both operational performance and sustainability in building management.Description
Source
IoT, ISSN: 2624-831X (Print); 2624-831X (Online), MDPI AG, 5(4), 801-815. doi: 10.3390/iot5040036
Publisher's version
Rights statement
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
