Repository logo
 

Smart Grid IoT Framework for Predicting Energy Consumption Using Federated Learning Homomorphic Encryption

Supervisor

Item type

Journal Article

Degree name

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Abstract

Homomorphic Encryption (HE) introduces new dimensions of security and privacy within federated learning (FL) and internet of things (IoT) frameworks that allow preservation of user privacy when handling data for FL occurring in Smart Grid (SG) technologies. In this paper, we propose a novel SG IoT framework to provide a solution for predicting energy consumption while preserving user privacy in a smart grid system. The proposed framework is based on the integration of FL, edge computing, and HE principles to provide a robust and secure framework to conduct machine learning workloads end-to-end. In the proposed framework, edge devices are connected to each other using P2P networking, and the data exchanged between peers is encrypted using Cheon–Kim–Kim–Song (CKKS) fully HE. The results obtained show that the system can predict energy consumption as well as preserve user privacy in SG scenarios. The findings provide an insight into the SG IoT framework that can help network researchers and engineers contribute further towards developing a next-generation SG IoT system.

Description

Source

sensors, ISSN: 1424-8220 (Print), MDPI, 25, 1-19. doi: 10.3390/s25123700

Rights statement

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).