Smart Grid IoT Framework for Predicting Energy Consumption Using Federated Learning Homomorphic Encryption
Date
Authors
Supervisor
Item type
Journal Article
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Abstract
Homomorphic Encryption (HE) introduces new dimensions of security and privacy within federated learning (FL) and internet of things (IoT) frameworks that allow preservation of user privacy when handling data for FL occurring in Smart Grid (SG) technologies. In this paper, we propose a novel SG IoT framework to provide a solution for predicting energy consumption while preserving user privacy in a smart grid system. The proposed framework is based on the integration of FL, edge computing, and HE principles to provide a robust and secure framework to conduct machine learning workloads end-to-end. In the proposed framework, edge devices are connected to each other using P2P networking, and the data exchanged between peers is encrypted using Cheon–Kim–Kim–Song (CKKS) fully HE. The results obtained show that the system can predict energy consumption as well as preserve user privacy in SG scenarios. The findings provide an insight into the SG IoT framework that can help network researchers and engineers contribute further towards developing a next-generation SG IoT system.Description
Keywords
0301 Analytical Chemistry, 0502 Environmental Science and Management, 0602 Ecology, 0805 Distributed Computing, 0906 Electrical and Electronic Engineering, Analytical Chemistry, 3103 Ecology, 4008 Electrical engineering, 4009 Electronics, sensors and digital hardware, 4104 Environmental management, 4606 Distributed computing and systems software
Source
sensors, ISSN: 1424-8220 (Print), MDPI, 25, 1-19. doi: 10.3390/s25123700
Publisher's version
Rights statement
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
