Repository logo
 

Adapting Multilingual Vision Language Transformers for Low-Resource Urdu Optical Character Recognition (OCR).

aut.relation.articlenumbere1964
aut.relation.journalPeerJ Comput Sci
aut.relation.startpagee1964
aut.relation.volume10
dc.contributor.authorCheema, Musa Dildar Ahmed
dc.contributor.authorShaiq, Mohammad Daniyal
dc.contributor.authorMirza, Farhaan
dc.contributor.authorKamal, Ali
dc.contributor.authorNaeem, M Asif
dc.date.accessioned2024-05-16T23:24:10Z
dc.date.available2024-05-16T23:24:10Z
dc.date.issued2024-04-29
dc.description.abstractIn the realm of digitizing written content, the challenges posed by low-resource languages are noteworthy. These languages, often lacking in comprehensive linguistic resources, require specialized attention to develop robust systems for accurate optical character recognition (OCR). This article addresses the significance of focusing on such languages and introduces ViLanOCR, an innovative bilingual OCR system tailored for Urdu and English. Unlike existing systems, which struggle with the intricacies of low-resource languages, ViLanOCR leverages advanced multilingual transformer-based language models to achieve superior performances. The proposed approach is evaluated using the character error rate (CER) metric and achieves state-of-the-art results on the Urdu UHWR dataset, with a CER of 1.1%. The experimental results demonstrate the effectiveness of the proposed approach, surpassing state of the-art baselines in Urdu handwriting digitization.
dc.identifier.citationPeerJ Comput Sci, ISSN: 2167-9843 (Print); 2376-5992 (Online), PeerJ, 10, e1964-. doi: 10.7717/peerj-cs.1964
dc.identifier.doi10.7717/peerj-cs.1964
dc.identifier.issn2167-9843
dc.identifier.issn2376-5992
dc.identifier.urihttp://hdl.handle.net/10292/17559
dc.languageeng
dc.publisherPeerJ
dc.relation.urihttps://peerj.com/articles/cs-1964/
dc.rights.accessrightsOpenAccess
dc.rights.urihttp://www.creativecommons.org/licenses/by/4.0/
dc.subjectDocument analysis
dc.subjectMultilingual
dc.subjectOCR
dc.subjectPerformance evaluation
dc.subjectTransformer based models
dc.subjectUrdu OCR
dc.subject46 Information and Computing Sciences
dc.subject0806 Information Systems
dc.subject46 Information and computing sciences
dc.titleAdapting Multilingual Vision Language Transformers for Low-Resource Urdu Optical Character Recognition (OCR).
dc.typeJournal Article
pubs.elements-id547979

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Adapting multilingual vision language transformers for low-resource Urdu optical character recognition (OCR).pdf
Size:
7.96 MB
Format:
Adobe Portable Document Format
Description:
Journal article