Repository logo
 

Bayesian Estimation of R-Vine Copula with Gaussian-Mixture GARCH Margins: An MCMC and Machine Learning Comparison

aut.relation.endpage3886
aut.relation.issue23
aut.relation.journalMathematics
aut.relation.startpage3886
aut.relation.volume13
dc.contributor.authorKhanthaporn, Rewat
dc.contributor.authorWichitaksorn, Nuttanan
dc.date.accessioned2025-12-10T23:22:52Z
dc.date.available2025-12-10T23:22:52Z
dc.date.issued2025-12-04
dc.description.abstract<jats:p>This study proposes Bayesian estimation of multivariate regular vine (R-vine) copula models with generalized autoregressive conditional heteroskedasticity (GARCH) margins modeled by Gaussian-mixture distributions. The Bayesian estimation approach includes Markov chain Monte Carlo and variational Bayes with data augmentation. Although R-vines typically involve computationally intensive procedures limiting their practical use, we address this challenge through parallel computing techniques. To demonstrate our approach, we employ thirteen bivariate copula families within an R-vine pair-copula construction, applied to a large number of marginal distributions. The margins are modeled as exponential-type GARCH processes with intertemporal capital asset pricing specifications, using a mixture of Gaussian and generalized Pareto distributions. Results from an empirical study involving 100 financial returns confirm the effectiveness of our approach.</jats:p>
dc.identifier.citationMathematics, ISSN: 2227-7390 (Print); 2227-7390 (Online), MDPI AG, 13(23), 3886-3886. doi: 10.3390/math13233886
dc.identifier.doi10.3390/math13233886
dc.identifier.issn2227-7390
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10292/20393
dc.languageen
dc.publisherMDPI AG
dc.relation.urihttps://www.mdpi.com/2227-7390/13/23/3886
dc.rights© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
dc.rights.accessrightsOpenAccess
dc.subject49 Mathematical Sciences
dc.subject4905 Statistics
dc.subjectBioengineering
dc.subjectregular vine copulas
dc.subjectvariational bayes with data augmentation
dc.subjectexponential-type generalised autoregressive conditional heteroskedasticity model
dc.subjectintertemporal capital asset pricing model
dc.subjectmixture distribution
dc.subjectMarkov chain Monte Carlo
dc.titleBayesian Estimation of R-Vine Copula with Gaussian-Mixture GARCH Margins: An MCMC and Machine Learning Comparison
dc.typeJournal Article
pubs.elements-id747594

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bayesian Estimation of R-Vine Copula with Gaussian-Mixture GARCH Margins.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format
Description:
Journal article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.37 KB
Format:
Plain Text
Description: