Improving Graph Collaborative Filtering With Network Motifs
| aut.relation.endpage | 20 | |
| aut.relation.journal | Neural Computing and Applications | |
| aut.relation.startpage | 1 | |
| dc.contributor.author | Zhang, Y | |
| dc.contributor.author | Yu, J | |
| dc.contributor.author | Liu, Z | |
| dc.contributor.author | Wang, G | |
| dc.contributor.author | Nguyen, M | |
| dc.contributor.author | Sheng, QZ | |
| dc.contributor.author | Wang, N | |
| dc.date.accessioned | 2025-03-11T19:28:21Z | |
| dc.date.available | 2025-03-11T19:28:21Z | |
| dc.date.issued | 2025-02-24 | |
| dc.description.abstract | Deep learning on graphs, specifically graph convolutional networks (GCNs), has exhibited exceptional efficacy in the domain of recommender systems. Most GCNs have a message-passing architecture that enables nodes to aggregate information from neighbours iteratively through multiple layers. This enables GCNs to learn from higher-order information, but the model does not allow for direct captions of the local structural patterns. Our rationale is to investigate the effectiveness of capturing such local patterns for graph-based collaborative filtering to enhance model’s learning ability per layer. This technique combines lower-order and higher-order interactions during layer-wise propagation. In this paper, we propose MotifGCN to aggregate both lower-order and higher-order information in each graph convolution layer. Specifically, we develop dedicated algorithms of generating motif adjacency matrices. The matrices are then used for motif-enhanced neighbourhood aggregation in each layer. As this paper focuses on recommender systems, MotifGCN is built on the basis of bipartite graphs. Our experiments on four real-world datasets show that MotifGCN has a superior performance compared to various state-of-the-art methods. | |
| dc.identifier.citation | Neural Computing and Applications, ISSN: 0941-0643 (Print); 1433-3058 (Online), Springer Science and Business Media LLC, 1-20. doi: 10.1007/s00521-025-11079-8 | |
| dc.identifier.doi | 10.1007/s00521-025-11079-8 | |
| dc.identifier.issn | 0941-0643 | |
| dc.identifier.issn | 1433-3058 | |
| dc.identifier.uri | http://hdl.handle.net/10292/18847 | |
| dc.language | en | |
| dc.publisher | Springer Science and Business Media LLC | |
| dc.relation.uri | https://link.springer.com/article/10.1007/s00521-025-11079-8 | |
| dc.rights | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. | |
| dc.rights.accessrights | OpenAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | 46 Information and Computing Sciences | |
| dc.subject | 4611 Machine Learning | |
| dc.subject | Bioengineering | |
| dc.subject | Machine Learning and Artificial Intelligence | |
| dc.subject | Networking and Information Technology R&D (NITRD) | |
| dc.subject | 0801 Artificial Intelligence and Image Processing | |
| dc.subject | 0906 Electrical and Electronic Engineering | |
| dc.subject | 1702 Cognitive Sciences | |
| dc.subject | Artificial Intelligence & Image Processing | |
| dc.subject | 4602 Artificial intelligence | |
| dc.subject | 4603 Computer vision and multimedia computation | |
| dc.subject | 4611 Machine learning | |
| dc.title | Improving Graph Collaborative Filtering With Network Motifs | |
| dc.type | Journal Article | |
| pubs.elements-id | 593781 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Zhang et al_2025_Improving graph collaborative filtering.pdf
- Size:
- 827.61 KB
- Format:
- Adobe Portable Document Format
- Description:
- Journal article
