Repository logo
 

Utilizing RT-DETR Model for Fruit Calorie Estimation from Digital Images

Supervisor

Item type

Journal Article

Degree name

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI AG

Abstract

Estimating the calorie content of fruits is critical for weight management and maintaining overall health as well as aiding individuals in making informed dietary choices. Accurate knowledge of fruit calorie content assists in crafting personalized nutrition plans and preventing obesity and associated health issues. In this paper, we investigate the application of deep learning models for estimating the calorie content in fruits from digital images, aiming to provide a more efficient and accurate method for nutritional analysis. We create a dataset comprising images of various fruits and employ random data augmentation techniques during training to enhance model robustness. We utilize the RT-DETR model integrated into the ultralytics framework for implementation and conduct comparative experiments with YOLOv10 on the dataset. Our results show that the RT-DETR model achieved a precision rate of 99.01% and mAP50-95 of 94.45% in fruit detection from digital images, outperforming YOLOv10 in terms of F1- Confidence Curves, P-R curves, precision, and mAP. Conclusively, in this paper, we utilize a transformer architecture to detect fruits and estimate their calorie and nutritional content. The results of the experiments provide a technical reference for more accurately monitoring an individual’s dietary intake by estimating the calorie content of fruits.

Description

Source

Information, ISSN: 2078-2489 (Online), MDPI AG, 15(8), 469-469. doi: 10.3390/info15080469

Rights statement

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).