Repository logo
 

One Pass Concept Change Detection for Data Streams

Supervisor

Item type

Conference Contribution

Degree name

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Verlag

Abstract

In this research we present a novel approach to the concept change detection problem. Change detection is a fundamental issue with data stream mining as models generated need to be updated when significant changes in the underlying data distribution occur. A number of change detection approaches have been proposed but they all suffer from limitations such as high computational complexity, poor sensitivity to gradual change, or the opposite problem of high false positive rate. Our approach, termed OnePassSampler, has low computational complexity as it avoids multiple scans on its memory buffer by sequentially processing data. Extensive experimentation on a wide variety of datasets reveals that OnePassSampler has a smaller false detection rate and smaller computational overheads while maintaining a competitive true detection rate to ADWIN2.

Description

Source

Advances in Knowledge Discovery and Data Mining. Lecture Notes in Computer Science Volume 7819, 2013, pp 461-472.

Publisher's version

Rights statement

The author may only post his/her version provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at www.springerlink.com”. (Please also see Publisher’s Version and Citation)