Repository logo
 

LLM-AIDSim: LLM-Enhanced Agent-Based Influence Diffusion Simulation in Social Networks

aut.relation.articlenumber29
aut.relation.endpage29
aut.relation.issue1
aut.relation.journalSystems
aut.relation.startpage29
aut.relation.volume13
dc.contributor.authorZhang, L
dc.contributor.authorHu, Y
dc.contributor.authorLi, W
dc.contributor.authorBai, Q
dc.contributor.authorNand, P
dc.date.accessioned2025-02-02T22:54:46Z
dc.date.available2025-02-02T22:54:46Z
dc.date.issued2025-01-03
dc.description.abstractThis paper introduces an LLM-Enhanced Agent-Based Influence Diffusion Simulation (LLM-AIDSim) framework that integrates large language models (LLMs) into agent-based modelling to simulate influence diffusion in social networks. The proposed framework enhances traditional influence diffusion models by allowing agents to generate language-level responses, providing deeper insights into user agent interactions. Our framework addresses the limitations of probabilistic models by simulating realistic, context-aware user behaviours in response to public statements. Using real-world news topics, we demonstrate the effectiveness of LLM-AIDSim in simulating topic evolution and tracking user discourse, validating its ability to replicate key aspects of real-world information propagation. Our experimental results highlight the role of influence diffusion in shaping collective discussions, revealing that, over time, diffusion narrows the focus of conversations around a few dominant topics. We further analyse regional differences in topic clustering and diffusion behaviours across three cities, Sydney, Auckland, and Hobart, revealing how demographics, income, and education levels influence topic dominance. This work underscores the potential of LLM-AIDSim as a decision-support tool for strategic communication, enabling organizations to anticipate and understand public sentiment trends.
dc.identifier.citationSystems, ISSN: 2079-8954 (Print); 2079-8954 (Online), MDPI AG, 13(1), 29-29. doi: 10.3390/systems13010029
dc.identifier.doi10.3390/systems13010029
dc.identifier.issn2079-8954
dc.identifier.issn2079-8954
dc.identifier.urihttp://hdl.handle.net/10292/18580
dc.languageen
dc.publisherMDPI AG
dc.relation.urihttps://www.mdpi.com/2079-8954/13/1/29
dc.rights© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
dc.rights.accessrightsOpenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject4605 Data Management and Data Science
dc.subject46 Information and Computing Sciences
dc.subject4609 Information Systems
dc.subject0801 Artificial Intelligence and Image Processing
dc.subject0803 Computer Software
dc.subject0806 Information Systems
dc.titleLLM-AIDSim: LLM-Enhanced Agent-Based Influence Diffusion Simulation in Social Networks
dc.typeJournal Article
pubs.elements-id584396

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhang et al._2025_LLM-AIDSim.pdf
Size:
32.85 MB
Format:
Adobe Portable Document Format
Description:
Journal article