Strawberry Ripeness Detection Using Deep Learning Models
Date
Authors
Supervisor
Item type
Journal Article
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI AG
Abstract
In agriculture, the timely and accurate assessment of fruit ripeness is crucial to optimizing harvest planning and reduce waste. In this article, we explore the integration of two cutting-edge deep learning models, YOLOv9 and Swin Transformer, to develop a complex model for detecting strawberry ripeness. Trained and tested on a specially curated dataset, our model achieves a mean precision (mAP) of 87.3% by using the metric intersection over union (IoU) at a threshold of 0.5. This outperforms the model using YOLOv9 alone, which achieves an mAP of 86.1%. Our model also demonstrated improved precision and recall, with precision rising to 85.3% and recall rising to 84.0%, reflecting its ability to accurately and consistently detect different stages of strawberry ripeness.Description
Source
Big Data and Cognitive Computing, ISSN: 2504-2289 (Online), MDPI AG, 8(8), 92-92. doi: 10.3390/bdcc8080092
Publisher's version
Rights statement
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
