In 15 day(s), 5 hour(s) and 51 minute(s): Our team is on break until January 7, 2026. Inquiries will be addressed shortly after our return. Thank you for your patience and happy holidays!
Repository logo
 

Unsupervised Thematic Context Discovery for Explainable AI in Fact Verification: Advancing the CARAG Framework

aut.relation.conference17th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management
aut.relation.endpage77
aut.relation.startpage67
aut.relation.volume1
dc.contributor.authorVallayil, Manju
dc.contributor.authorNand, P
dc.contributor.authorYan, Wei Qi
dc.contributor.authorAllende-Cid, H
dc.contributor.editorCoenen, F
dc.contributor.editorNolle, L
dc.contributor.editorAveiro, D
dc.contributor.editorFernández-Breis, J
dc.contributor.editorMasciari, E
dc.contributor.editorGruenwald, L
dc.contributor.editorBernardino, J
dc.contributor.editorTorres, R
dc.date.accessioned2025-12-11T02:12:24Z
dc.date.available2025-12-11T02:12:24Z
dc.date.issued2025-12
dc.description.abstractThis paper introduces CARAG-u, an unsupervised extension of the Context-Aware Retrieval Augmented Generation (CARAG) framework, designed to advance explainability in Automated Fact Verification (AFV) architectures. Unlike its predecessor, CARAG-u eliminates reliance on predefined thematic annotations and claim-evidence pair labels, by dynamically deriving thematic clusters and evidence pools from unstructured datasets. This innovation enables CARAG-u to balance local and global perspectives in evidence retrieval and explanation generation. We benchmark CARAG-u against Retrieval Augmented Generation (RAG) and compare it with CARAG, highlighting its unsupervised adaptability while maintaining a competitive performance. Evaluations on the FactVer dataset demonstrate CARAG-u’s ability to generate thematically coherent and context-sensitive post-hoc explanations, advancing Explainable AI in AFV. The implementation of CARAG-u, including all dependencies, is publicly available to ensure reproducibility and support further research.
dc.identifier.citationIn Proceedings of the 17th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - KDIR, 2025, Marbella, Spain; ISBN ; ISSN 2184-3228, SciTePress, pages 67-77. DOI: 10.5220/0013683400004000
dc.identifier.doi10.5220/0013683400004000
dc.identifier.isbn9789897587696
dc.identifier.issn2184-3228
dc.identifier.urihttp://hdl.handle.net/10292/20397
dc.publisherSciTePress - Science and Technology Publications
dc.relation.urihttps://www.scitepress.org/Link.aspx?doi=10.5220/0013683400004000
dc.rightsCC BY-NC-ND 4.0
dc.rights.accessrightsOpenAccess
dc.subject4613 Theory Of Computation
dc.subject46 Information and Computing Sciences
dc.subjectExplainable AI(XAI)
dc.subjectAutomated Fact Verification (AFV)
dc.subjectRetrieval Augmented Generation (RAG)
dc.subjectExplainable AFV
dc.subjectFact Checking
dc.titleUnsupervised Thematic Context Discovery for Explainable AI in Fact Verification: Advancing the CARAG Framework
dc.typeConference Contribution
pubs.elements-id747271

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Unsupervised thematic context discovery.pdf
Size:
933.86 KB
Format:
Adobe Portable Document Format
Description:
Conference contribution

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.37 KB
Format:
Plain Text
Description: