Repository logo
 

Measuring monotony in two-dimensional samples

Date

Supervisor

Item type

Journal Article

Degree name

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis

Abstract

The paper introduces a monotony coefficient as a new measure of the monotone dependence in a two-dimensional sample. Some properties of this measure are derived. In particular, it is shown that the absolute value of the monotony coefficient for a twodimensional sample is between | r | and 1, where r is the Pearson’s correlation coefficient for the sample; that the monotony coefficient equals 1 for any monotone increasing sample and equals -1 for any monotone decreasing sample. The paper contains a few examples demonstrating that the monotony coefficient is a more accurate measure of the degree of monotone dependence for a non-linear relationship than the Pearson’s, Spearman’s and Kendall’s correlation coefficients. The monotony coefficient is a tool that can be applied to samples in order to find dependencies between random variables; it is especially useful in finding couples of dependent variables in a big dataset of many variables. Undergraduate students in mathematics and science would benefit from learning and applying this measure of monotone dependence.

Description

Source

International Journal of Mathematical Education in Science and Technology, vol.41(3), pp.418 - 427

Rights statement

Copyright © 2010 Taylor & Francis. Authors retain the right to place his/her pre-publication version of the work on a personal website or institutional repository as an electronic file for personal or professional use, but not for commercial sale or for any systematic external distribution by a third. This is an electronic version of an article published in (see Citation). International Journal of Mathematical Education in Science and Technology is available online at: www.tandfonline.com with the open URL of your article (see Publisher’s Version).