Repository logo
 

CARAG: A Context-Aware Retrieval Framework for Fact Verification, Integrating Local and Global Perspectives of Explainable AI

aut.relation.endpage1970
aut.relation.issue4
aut.relation.journalApplied Sciences
aut.relation.startpage1970
aut.relation.volume15
dc.contributor.authorVallayil, Manju
dc.contributor.authorNand, Parma
dc.contributor.authorYan, Wei Qi
dc.contributor.authorAllende-Cid, Héctor
dc.contributor.authorVamathevan, Thamilini
dc.date.accessioned2025-02-16T20:32:31Z
dc.date.available2025-02-16T20:32:31Z
dc.date.issued2025-02-13
dc.description.abstractThis study introduces an explainable framework for Automated Fact Verification (AFV) systems, integrating a novel Context-Aware Retrieval and Explanation Generation (CARAG) methodology. CARAG enhances evidence retrieval by leveraging thematic embeddings derived from a Subset of Interest (SOI, a focused subset of the fact-verification dataset) to integrate local and global perspectives. The retrieval process combines these thematic embeddings with claim-specific vectors to refine evidence selection. Retrieved evidence is integrated into an explanation-generation pipeline employing a Large Language Model (LLM) in a zero-shot paradigm, ensuring alignment with topic-based thematic contexts. The SOI and its derived thematic embeddings, supported by a visualized SOI graph, provide transparency into the retrieval process and promote explainability in AI by outlining evidence-selection rationale. CARAG is evaluated using FactVer, a novel explanation-focused dataset curated to enhance AFV transparency. Comparative analysis with standard Retrieval-Augmented Generation (RAG) demonstrates CARAG’s effectiveness in generating contextually aligned explanations, underscoring its potential to advance explainable AFV frameworks.
dc.identifier.citationApplied Sciences, ISSN: 2076-3417 (Online), MDPI AG, 15(4), 1970-1970. doi: 10.3390/app15041970
dc.identifier.doi10.3390/app15041970
dc.identifier.issn2076-3417
dc.identifier.urihttp://hdl.handle.net/10292/18663
dc.languageen
dc.publisherMDPI AG
dc.relation.urihttps://www.mdpi.com/2076-3417/15/4/1970
dc.rights© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
dc.rights.accessrightsOpenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleCARAG: A Context-Aware Retrieval Framework for Fact Verification, Integrating Local and Global Perspectives of Explainable AI
dc.typeJournal Article
pubs.elements-id590369

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-15-01970(Parma).pdf
Size:
9.86 MB
Format:
Adobe Portable Document Format
Description:
Journal article