Repository logo
 

Secure Cross-Layer Mobile Sensing Framework for Real-Time Disaster Reporting and Visualisation Using a Mobile Application

Supervisor

Item type

Journal Article

Degree name

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI AG

Abstract

As the number of natural and man-made catastrophes has increased in recent years, there has been an increasing need for quicker and more efficient disaster response. Information from traditional sources, such as radio, television, and websites, is sometimes incomplete or delayed. While mobile applications provide a means of enhancing real-time crisis communication, a secure mobile app-based solution has not been fully explored yet. In this paper, we propose a secure and scalable cross-layer disaster management system architecture. To validate the system performance, we developed a user-centred, scalable mobile application known as the disaster emergency events application (DEAPP) for real-time disaster reporting and visualization including disaster notifications and observing the affected areas on an interactive map. The solution connects a web-based backend, cloud database, and native Android mobile app via a cross-layer architecture. Role-based access control, HTTPS connection, and verified event publication all contribute to security. Moreover, Redis caching is employed to expedite data access in emergency situations. The need to verify publicly filed reports to prevent false alarms, safeguard real-time data transfer without slowing down the system, and create an intuitive user interface for individuals in high-stress circumstances are some of the issues that the project attempts to solve. The results obtained show that a mobile system that is secure, scalable, and easy to use can enhance catastrophe awareness and facilitate quicker emergency responses. For developers, researchers, and emergency organisations looking to leverage mobile technology for disaster preparedness, the findings provide helpful insights.

Description

Source

Sensors, ISSN: 1424-2818 (Print); 1424-8220 (Online), MDPI AG, (25), 1-32. doi: 10.3390/s25216766

Rights statement

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).