Geometrical Optimal Navigation and Path Planning - Bridging Theory, Algorithms, and Applications
Date
Supervisor
Item type
Journal Article
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI AG
Abstract
Autonomous systems, such as self-driving cars, surgical robots, and space rovers, require efficient and collision-free navigation in dynamic environments. Geometric optimal navigation and path planning have become critical research areas, combining geometry, optimization, and machine learning to address these challenges. This paper systematically reviews state-of-the-art methodologies in geometric navigation and path planning, with a focus on integrating advanced geometric principles, optimization techniques, and machine learning algorithms. It examines recent advancements in continuous optimization, real-time adaptability, and learning-based strategies, which enable robots to navigate dynamic environments, avoid moving obstacles, and optimize trajectories under complex constraints. The study identifies several unresolved challenges in the field, including scalability in high-dimensional spaces, real-time computation for dynamic environments, and the integration of perception systems for accurate environment modeling. Additionally, ethical and safety concerns in human–robot interactions are highlighted as critical issues for real-world deployment. The paper provides a comprehensive framework for addressing these challenges, bridging the gap between classical algorithms and modern techniques. By emphasizing recent advancements and unresolved challenges, this work contributes to the broader understanding of geometric optimal navigation and path planning. The insights presented here aim to inspire future research and foster the development of more robust, efficient, and intelligent navigation systems. This survey not only highlights the novelty of integrating geometry, optimization, and machine learning but also provides a roadmap for addressing critical issues in the field, paving the way for the next generation of autonomous systems.Description
Keywords
0301 Analytical Chemistry, 0502 Environmental Science and Management, 0602 Ecology, 0805 Distributed Computing, 0906 Electrical and Electronic Engineering, Analytical Chemistry, 3103 Ecology, 4008 Electrical engineering, 4009 Electronics, sensors and digital hardware, 4104 Environmental management, 4606 Distributed computing and systems software
Source
Sensors, ISSN: 1424-8220 (Online), MDPI AG, 25(22), 6874-6874. doi: 10.3390/s25226874
Publisher's version
Rights statement
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
