Repository logo
 

Bayesian Power Spectral Density Estimation for LISA Noise Based on Penalized Splines With a Parametric Boost

aut.relation.articlenumber024022
aut.relation.issue2
aut.relation.journalPhysical Review D
aut.relation.volume113
dc.contributor.authorAimen, Nazeela
dc.contributor.authorMaturana-Russel, Patricio
dc.contributor.authorVajpeyi, Avi
dc.contributor.authorChristensen, Nelson
dc.contributor.authorMeyer, Renate
dc.date.accessioned2026-01-14T20:56:38Z
dc.date.available2026-01-14T20:56:38Z
dc.date.issued2026-01-09
dc.description.abstractFlexible and accurate noise characterization is crucial for the precise estimation of gravitational-wave parameters. We introduce a Bayesian method for estimating the power spectral density (PSD) of long, stationary time series, explicitly tailored for Laser Interferometer Space Antenna (LISA) data analysis. Our approach models the PSD as the geometric mean of a parametric and a nonparametric component, combining the knowledge from parametric models with the flexibility to capture deviations from theoretical expectations. The nonparametric component is expressed by a mixture of penalized B splines. Adaptive, data-driven knot placement, performed once at initialization, removes the need for a reversible-jump Markov chain Monte Carlo, while hierarchical roughness-penalty priors prevent overfitting. Validation on simulated autoregressive (AR) data of order 4 [AR(4)] demonstrates estimator consistency and shows that well-matched parametric components reduce the integrated absolute error compared to an uninformative baseline, requiring fewer spline knots to achieve comparable accuracy. Applied to one year of simulated LISA 𝑋-channel (univariate) noise, our method achieves relative integrated absolute errors of 𝒪⁡(10ˉ²), making it suitable for iterative analysis pipelines and multiyear mission data sets.
dc.identifier.citationPhysical Review D, ISSN: 2470-0010 (Print); 2470-0029 (Online), American Physical Society (APS), 113(2). doi: 10.1103/dcb6-1jsl
dc.identifier.doi10.1103/dcb6-1jsl
dc.identifier.issn2470-0010
dc.identifier.issn2470-0029
dc.identifier.urihttp://hdl.handle.net/10292/20494
dc.languageen
dc.publisherAmerican Physical Society (APS)
dc.relation.urihttps://journals.aps.org/prd/abstract/10.1103/dcb6-1jsl
dc.rightsThis is the Author's Accepted Manuscript of an article published in Physical Review D. The Version of Record is available at DOI: 10.1103/dcb6-1jsl
dc.rights.accessrightsOpenAccess
dc.subject49 Mathematical Sciences
dc.subject4905 Statistics
dc.subjectgravitational waves
dc.subjectPSD estimation
dc.subjectP-splines
dc.subjectLISA
dc.titleBayesian Power Spectral Density Estimation for LISA Noise Based on Penalized Splines With a Parametric Boost
dc.typeJournal Article
pubs.elements-id750614

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Aimen et al_2026_Bayesian power spectral density estimation.pdf
Size:
817.11 KB
Format:
Adobe Portable Document Format
Description:
Author Accepted Manuscript

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.37 KB
Format:
Plain Text
Description: