Influencing Lumbar Posture Through Real-Time Biofeedback and Its Effects on the Kinematics and Kinetics of a Repetitive Lifting Task

Date
2019
Authors
Boocock, M
Naude, Y
Taylor, S
Kilby, J
Mawston, G
Supervisor
Item type
Journal Article
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract

BACKGROUND: Repetitive, flexed lumbar postures are a risk factor associated with low back injuries. Young, novice workers involved in manual handling also appear at increased risk of injury. The evidence for the effectiveness of postural biofeedback as an intervention approach is lacking, particularly for repetitive, fatiguing tasks. RESEARCH QUESTION: How does real-time lumbosacral (LS) postural biofeedback modify the kinematics and kinetics of repetitive lifting and the risk of low back injury? METHODS: Thirty-four participants were randomly allocated to two groups: biofeedback (BF) and non-biofeedback (NBF). Participants repetitively lifted a 13 kg box at 10 lifts per minute for up to 20 min. Real-time biofeedback of LS posture occurred when flexion exceeded 80% maximum. Three-dimensional motion analysis and ground reaction forces enabled estimates of joint kinematics and kinetics. Rating of perceived exertion (RPE) was measured throughout. RESULTS: The BF group adopted significantly less peak lumbosacral flexion (LSF) over the 20 min when compared to the NBF group, which resulted in a significant reduction in LS passive resistance forces. This was accompanied by increased peak hip and knee joint angular velocities in the BF group. Lower limb moments did not significantly differ between groups. Feedback provided to participants diminished beyond 10 min and subjective perceptions of physical exertion were lower in the BF group. SIGNIFICANCE: Biofeedback of lumbosacral posture enabled participants to make changes in LSF that appear beneficial in reducing the risk of low back injury during repetitive lifting. Accompanying behavioural adaptations did not negatively impact on physical exertion or lower limb joint moments. Biofeedback of LS posture offers a potential preventative and treatment adjunct to educate handlers about their lifting posture. This could be particularly important for young, inexperienced workers employed in repetitive manual handling who appear at increased risk of back injury.

Description
Keywords
Biofeedback , Biomechanics/spine , Low back/lumbar spine , Manual handling , Repetitive lifting
Source
Gait & Posture. Volume 73, September 2019, pp. 93-100.
Rights statement
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).