Repository logo
 

LIGO Core-Collapse Supernova Detection Using Convolution Neural Networks

dc.contributor.authorPan, Zhicheng
dc.contributor.authorZahraoui, El Mehdi
dc.contributor.authorCabrera-Guerrero, Guillermo
dc.contributor.authorMaturana-Russel, Patricio
dc.date.accessioned2026-02-11T01:49:46Z
dc.date.available2026-02-11T01:49:46Z
dc.date.issued2024-10-08
dc.description.abstractCore-Collapse Supernovae (CCSNe) remain a critical focus in the search for gravitational waves (GWs) in modern astronomy. Their detection and subsequent analysis will enhance our understanding of the explosion mechanisms in massive stars. This paper investigates a combination of time-frequency analysis tools with convolutional neural network (CNN) to enhance the detection of GWs originating from CCSNe. The CNN was trained on simulated CCSNe signals and Advanced LIGO (aLIGO) noise in two instances, using spectrograms computed from two time-frequency transformations: the short-time Fourier transform (STFT) and the Q-transform. The algorithm detects CCSNe signals based on their time-frequency spectrograms. Our CNN model achieves a near 100% true positive rate for CCSNe GW events with a signal-to-noise ratio (SNR) greater than 0.5 in our test set. We also found that the STFT outperforms the Q-transform for SNRs below 0.5.
dc.description.versionpreprint
dc.identifier.citationPan, Z., Zahraoui, E. M., Cabrera-Guerrero, G., & Maturana-Russel, P. (2024). LIGO core-collapse supernova detection using convolution neural networks (arXiv:2410.06430v2). arXiv. https://doi.org/10.48550/arXiv.2410.06430
dc.identifier.doi10.48550/arxiv.2410.06430
dc.identifier.urihttp://hdl.handle.net/10292/20614
dc.publisherarXiv
dc.relation.urihttps://arxiv.org/abs/2410.06430
dc.rights.accessrightsOpenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject46 Information and Computing Sciences
dc.subject5101 Astronomical Sciences
dc.subject51 Physical Sciences
dc.subjectBioengineering
dc.titleLIGO Core-Collapse Supernova Detection Using Convolution Neural Networks
dc.typeTechnical report
pubs.elements-id573244

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pan et al_2024_LIGO core collapse supernova detection.pdf
Size:
2.33 MB
Format:
Adobe Portable Document Format
Description:
Technical report

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.37 KB
Format:
Plain Text
Description: