Repository logo
 

Hierarchical Residual Attention Network for Musical Instrument Recognition Using Scaled Multi-Spectrogram

aut.relation.endpage10837
aut.relation.issue23
aut.relation.journalApplied Sciences
aut.relation.startpage10837
aut.relation.volume14
dc.contributor.authorChen, Rujia
dc.contributor.authorGhobakhlou, Akbar
dc.contributor.authorNarayanan, Ajit
dc.date.accessioned2024-12-11T21:32:42Z
dc.date.available2024-12-11T21:32:42Z
dc.date.issued2024-11-22
dc.description.abstractMusical instrument recognition is a relatively unexplored area of machine learning due to the need to analyze complex spatial–temporal audio features. Traditional methods using individual spectrograms, like STFT, Log-Mel, and MFCC, often miss the full range of features. Here, we propose a hierarchical residual attention network using a scaled combination of multiple spectrograms, including STFT, Log-Mel, MFCC, and CST features (Chroma, Spectral contrast, and Tonnetz), to create a comprehensive sound representation. This model enhances the focus on relevant spectrogram parts through attention mechanisms. Experimental results with the OpenMIC-2018 dataset show significant improvement in classification accuracy, especially with the “Magnified 1/4 Size” configuration. Future work will optimize CST feature scaling, explore advanced attention mechanisms, and apply the model to other audio tasks to assess its generalizability.
dc.identifier.citationApplied Sciences, ISSN: 2076-3417 (Print); 2076-3417 (Online), MDPI AG, 14(23), 10837-10837. doi: 10.3390/app142310837
dc.identifier.doi10.3390/app142310837
dc.identifier.issn2076-3417
dc.identifier.issn2076-3417
dc.identifier.urihttp://hdl.handle.net/10292/18449
dc.languageen
dc.publisherMDPI AG
dc.relation.urihttps://www.mdpi.com/2076-3417/14/23/10837
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
dc.rights.accessrightsOpenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject46 Information and Computing Sciences
dc.subject4611 Machine Learning
dc.titleHierarchical Residual Attention Network for Musical Instrument Recognition Using Scaled Multi-Spectrogram
dc.typeJournal Article
pubs.elements-id576448

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hierarchical Residual Attention Network for Musical Instrument Recognition.pdf
Size:
10.22 MB
Format:
Adobe Portable Document Format
Description:
Journal article