Repository logo
 

Automated Food Weight and Content Estimation Using Computer Vision and AI Algorithms

Supervisor

Item type

Journal Article

Degree name

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI AG

Abstract

The work aims to leverage computer vision and artificial intelligence technologies to quantify key components in food distribution services. Specifically, it focuses on dish counting, content identification, and portion size estimation in a dining hall setting. An RGB camera is employed to capture the tray delivery process in a self-service restaurant, providing test images for plate counting and content identification algorithm comparison, using standard evaluation metrics. The approach utilized the YOLO architecture, a widely recognized deep learning model for object detection and computer vision. The model is trained on labeled image data, and its performance is assessed using a precision–recall curve at a confidence threshold of 0.5, achieving a mean average precision (mAP) of 0.873, indicating robust overall performance. The weight estimation procedure combines computer vision techniques to measure food volume using both RGB and depth cameras. Subsequently, density models specific to each food type are applied to estimate the detected food weight. The estimation model’s parameters are calibrated through experiments that generate volume-to-weight conversion tables for different food items. Validation of the system was conducted using rice and chicken, yielding error margins of 5.07% and 3.75%, respectively, demonstrating the feasibility and accuracy of the proposed method.

Description

Source

Sensors, ISSN: 1424-8220 (Print); 1424-8220 (Online), MDPI AG, 24(23), 7660-7660. doi: 10.3390/s24237660

Rights statement

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).