Repository logo
 

Grid Search Optimization of Novel SNN-ESN Classifier on a Supercomputer Platform

aut.relation.conference14th International Conference on Large-Scale Scientific Computations (LSSC 2023)
aut.relation.endpage443
aut.relation.startpage435
aut.relation.volume13952
dc.contributor.authorPenkov, Dimitar
dc.contributor.authorKoprinkova-Hristova, Petia
dc.contributor.authorKasabov, Nikola
dc.contributor.authorNedelcheva, Simona
dc.contributor.authorIvanovska, Sofiya
dc.contributor.authorYordanov, Svetlozar
dc.contributor.editorLirkov, Ivan
dc.contributor.editorMargenov, Svetozar
dc.date.accessioned2024-07-09T01:38:04Z
dc.date.available2024-07-09T01:38:04Z
dc.date.issued2024-05-24
dc.description.abstractThis work is demonstrating the use of a supercomputer platform to optimise hyper-parameters of a proposed by the team novel SNN-ESN computational model, that combines a brain template of spiking neurons in a spiking neural network (SNN) for feature extraction and an Echo State Network (ESN) for dynamic data series classification. A case study problem and data are used to illustrate the functionalities of the SNN-ESN. The overall SNN-ESN classifier has several hyper-parameters that are subject to refinement, such as: spiking threshold, duration of the refractory period and STDP learning rate for the SNN part; reservoir size, spectral radius of the connectivity matrix and leaking rate for the ESN part. In order to find the optimal hyper-parameter values exhaustive search over all possible combinations within reasonable intervals was performed using supercomputer Avitohol. The resulted optimal parameters led to improved classification accuracy. This work demonstrates the importance of model parameter optimisation using a supercomputer platform, which improves the usability of the proposed SNN-ESN for real-time applications on complex spatio-temporal data.
dc.identifier.doi10.1007/978-3-031-56208-2_45
dc.identifier.isbn9783031562075
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/10292/17767
dc.publisherSpringer Nature Switzerland
dc.relation.urihttps://link.springer.com/chapter/10.1007/978-3-031-56208-2_45
dc.rightsOpen Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
dc.rights.accessrightsOpenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject46 Information and Computing Sciences
dc.subject4611 Machine Learning
dc.subjectNeurosciences
dc.subjectArtificial Intelligence & Image Processing
dc.subject46 Information and computing sciences
dc.titleGrid Search Optimization of Novel SNN-ESN Classifier on a Supercomputer Platform
dc.typeConference Contribution
pubs.elements-id555180

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
978-3-031-56208-2_45.pdf
Size:
480.42 KB
Format:
Adobe Portable Document Format
Description:
Conference contribution