Repository logo
 

An Attention-based BERT–CNN–BiLSTM Model for Depression Detection From Emojis in Social Media Text

aut.relation.articlenumber310
aut.relation.endpage310
aut.relation.issue12
aut.relation.journalBig Data and Cognitive Computing
aut.relation.startpage310
aut.relation.volume9
dc.contributor.authorThekkekara, Joel Philip
dc.contributor.authorYongchareon, Sira
dc.date.accessioned2026-01-26T19:37:57Z
dc.date.available2026-01-26T19:37:57Z
dc.date.issued2025-12-03
dc.description.abstractDepression represents a critical global mental health challenge, with social media offering unprecedented opportunities for early detection through computational analysis. We propose a novel BERT–CNN–BiLSTM architecture with attention mechanisms that systematically integrate emoji usage patterns—fundamental components of digital emotional expression overlooked by existing approaches. Evaluated on the SuicidEmoji dataset, our model achieves 97.12% accuracy, 94.56% precision, 93.44% F1-score, 85.67% MCC, and 91.23% AUC-ROC. Analysis reveals distinct emoji patterns: depressed users favour negative emojis (😔 13.9%, 😢 12.8%, 💔 6.7%) while controls prefer positive expressions (😂 16.5%, 😊 11.0%, 😎 10.2%). The attention mechanism identifies key linguistic markers, including emotional indicators, personal pronouns, and emoji features, providing interpretable insights into depression-related language. Our findings suggest that the integration of emojis substantially improves optimal social media-based mental health detection systems.
dc.identifier.citationBig Data and Cognitive Computing, ISSN: 2504-2289 (Print); 2504-2289 (Online), MDPI AG, 9(12), 310-310. doi: 10.3390/bdcc9120310
dc.identifier.doi10.3390/bdcc9120310
dc.identifier.issn2504-2289
dc.identifier.issn2504-2289
dc.identifier.urihttp://hdl.handle.net/10292/20540
dc.languageen
dc.publisherMDPI AG
dc.relation.urihttps://www.mdpi.com/2504-2289/9/12/310
dc.rights© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
dc.rights.accessrightsOpenAccess
dc.subject46 Information and Computing Sciences
dc.subject4608 Human-Centred Computing
dc.subjectDepression
dc.subjectMental Illness
dc.subjectMental Health
dc.subjectBrain Disorders
dc.subjectBehavioral and Social Science
dc.subject3 Good Health and Well Being
dc.subject46 Information and computing sciences
dc.subjectdepression detection
dc.subjectnatural language processing
dc.subjectdeep learning
dc.subjectemoji analysis
dc.titleAn Attention-based BERT–CNN–BiLSTM Model for Depression Detection From Emojis in Social Media Text
dc.typeJournal Article
pubs.elements-id749242

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BDCC-09-00310-v3.pdf
Size:
945.25 KB
Format:
Adobe Portable Document Format
Description:
Journal article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.37 KB
Format:
Plain Text
Description: