Curvature dependence of propagating velocity for a simplified calcium model

Date
2014-02-19
Authors
Zhang, W
Supervisor
Item type
Internet Publication
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
arXiv.org
Abstract

It is known that curvature relation plays a key role in the propagation of two-dimensional waves in an excitable model. Such a relation is believed to obey the eikonal equation for typical excitable models (e.g., the FitzHugh-Nagumo (FHN) model), which states that the relation between the normal velocity and the local curvature is approximately linear. In this paper, we show that for a simplified model of intracellular calcium dynamics, although its temporal dynamics can be investigated by analogy with the FHN model, the curvature relation does not obey the eikonal equation. Further, the inconsistency with the eikonal equation for the calcium model is because of the dispersion relation between wave speed s and volume-ratio parameter γ in the closed-cell version of the model, not because of the separation of the fast and the slow variables as in the FHN model. Hence this simplified calcium model may be an unexpected excitable system, whose wave propagation properties cannot be always understood by analogy with the FHN model.

Description
Keywords
Calcium dynamics , Eikonal equation , Traveling waves , Stability , FitzHugh-Nagumo model
Source
arXiv:1402.4554v1 [math.DS]
DOI
Rights statement
arXiv supports and participates in the Open Archives Initiative (OAI). arXiv is a registered OAI-PMH data-provider and provides metadata for all submissions which is updated each night shortly after new submissions are announced. Metadata for arXiv articles may be reused in non-commercial and commercial systems.