Editorial Topical Collection: “Explainable and Augmented Machine Learning for Biosignals and Biomedical Images”
| aut.event.place | , Switzerland | |
| aut.relation.issue | 24 | |
| aut.relation.startpage | 9722 | |
| aut.relation.volume | 23 | |
| dc.contributor.author | Ieracitano, Cosimo | |
| dc.contributor.author | Mahmud, Mufti | |
| dc.contributor.author | Doborjeh, Maryam | |
| dc.contributor.author | Lay-Ekuakille, Aimé | |
| dc.date.accessioned | 2025-02-19T22:35:36Z | |
| dc.date.available | 2025-02-19T22:35:36Z | |
| dc.date.issued | 2023-12-09 | |
| dc.description.abstract | Machine learning (ML) is a well-known subfield of artificial intelligence (AI) that aims at developing algorithms and statistical models able to empower computer systems to automatically adapt to a specific task through experience or learning from data [...]. | |
| dc.format.medium | Electronic | |
| dc.identifier.citation | Ieracitano, C., Mahmud, M., Doborjeh, M., & Lay-Ekuakille, A. (2023). Editorial Topical Collection: “Explainable and Augmented Machine Learning for Biosignals and Biomedical Images”. Sensors, 23(24), 9722. https://doi.org/10.3390/s23249722 | |
| dc.identifier.doi | 10.3390/s23249722 | |
| dc.identifier.issn | 1424-8220 | |
| dc.identifier.issn | 1424-8220 | |
| dc.identifier.uri | http://hdl.handle.net/10292/18722 | |
| dc.language | eng | |
| dc.publisher | MDPI AG | |
| dc.relation.uri | https://www.mdpi.com/1424-8220/23/24/9722 | |
| dc.rights | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | |
| dc.rights.accessrights | OpenAccess | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | 46 Information and Computing Sciences | |
| dc.subject | 4602 Artificial Intelligence | |
| dc.subject | 4611 Machine Learning | |
| dc.subject | Networking and Information Technology R&D (NITRD) | |
| dc.subject | Machine Learning and Artificial Intelligence | |
| dc.subject | Data Science | |
| dc.subject | Bioengineering | |
| dc.subject | 0301 Analytical Chemistry | |
| dc.subject | 0502 Environmental Science and Management | |
| dc.subject | 0602 Ecology | |
| dc.subject | 0805 Distributed Computing | |
| dc.subject | 0906 Electrical and Electronic Engineering | |
| dc.subject | Analytical Chemistry | |
| dc.subject | 3103 Ecology | |
| dc.subject | 4008 Electrical engineering | |
| dc.subject | 4009 Electronics, sensors and digital hardware | |
| dc.subject | 4104 Environmental management | |
| dc.subject | 4606 Distributed computing and systems software | |
| dc.subject.mesh | Algorithms | |
| dc.subject.mesh | Artificial Intelligence | |
| dc.subject.mesh | Computer Systems | |
| dc.subject.mesh | Machine Learning | |
| dc.subject.mesh | Models, Statistical | |
| dc.subject.mesh | Artificial Intelligence | |
| dc.subject.mesh | Machine Learning | |
| dc.subject.mesh | Algorithms | |
| dc.subject.mesh | Computer Systems | |
| dc.subject.mesh | Models, Statistical | |
| dc.subject.mesh | Models, Statistical | |
| dc.subject.mesh | Algorithms | |
| dc.subject.mesh | Artificial Intelligence | |
| dc.subject.mesh | Computer Systems | |
| dc.subject.mesh | Machine Learning | |
| dc.subject.mesh | Artificial Intelligence | |
| dc.subject.mesh | Machine Learning | |
| dc.subject.mesh | Algorithms | |
| dc.subject.mesh | Computer Systems | |
| dc.subject.mesh | Models, Statistical | |
| dc.title | Editorial Topical Collection: “Explainable and Augmented Machine Learning for Biosignals and Biomedical Images” | |
| dc.type | Other Form of Assessable Output | |
| pubs.elements-id | 533320 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Editorial Topical Collection Explainable and Augmented Machine Learning for Biosignals and Biomedical Images.pdf
- Size:
- 235.51 KB
- Format:
- Adobe Portable Document Format
- Description:
- Other Form of Assessable Output
