AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification and Identification of Industrial Gases Based on Electronic Nose Technology

Li, H; Luo, D; Sun, Y; Gholamhosseini, H
Thumbnail
View/Open
Journal article (947.8Kb)
Permanent link
http://hdl.handle.net/10292/14037
Metadata
Show full metadata
Abstract
Rapid detection and identification of industrial gases is a challenging problem. They have a complex composition and different specifications. This paper presents a method based on the kernel discriminant analysis (KDA) algorithm to identify industrial gases. The smell prints of four typical industrial gases were collected by an electronic nose. The extracted features of the collected gases were employed for gas identification using different classification algorithms, including principal component analysis (PCA), linear discriminant analysis (LDA), PCA + LDA, and KDA. In order to obtain better classification results, we reduced the dimensions of the original high-dimensional data, and chose a good classifier. The KDA algorithm provided a high classification accuracy of 100% by selecting the offset of the kernel function c = 10 and the degree of freedom d = 5. It was found that this accuracy was 4.17% higher than the one obtained using PCA. In the case of standard deviation, the KDA algorithm has the highest recognition rate and the least time consumption.
Keywords
Electronic nose; Industrial gas; Classification and identification; Kernel discriminant analysis
Date
2019
Source
Sensors 2019, 19, 5033; doi:10.3390/s19225033
Item Type
Journal Article
Publisher
MDPI
DOI
10.3390/s19225033
Publisher's Version
https://www.mdpi.com/1424-8220/19/22/5033
Rights Statement
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library