AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Economical and Environmental Alternative to Traditional Can Manufacturing Using a New Pre-laminated Steel

Ramezani, M
Thumbnail
View/Open
Conference Contribution (1.216Mb)
Permanent link
http://hdl.handle.net/10292/13627
Metadata
Show full metadata
Abstract
Metal containers are the most commonly used packaging worldwide in both the food and beverage industry. Some manufacturing processes in the canning industry include multi-step transformations that take large aluminum or steel coils and make them into two or three-piece cans. During this process, the containers are sprayed to obtain a better surface for the contents; however, this spray produces volatile organic compounds (VOC). This paper presents a new and environmentally friendly can manufacturing method, which uses a novel pre-laminated two-layer polymer steel. As experimentally proven, this innovative polymer-coated steel successfully withstands every manufacturing requirement. The specimens were tested in an ironing simulator, measuring roughness and friction coefficients. The development of an upper bound ironing model, along with a supporting neural network, allows an insight into the design of new materials for can manufacturing.
Keywords
Coating; Ironing; VOC; Upper bound; Polymer; Coating; Can; Neural network; ANN
Date
May 14, 2020
Source
Materials Proceedings, 2(1), 21. doi:10.3390/ciwc2020-06841
Item Type
Conference Contribution
Publisher
MDPI
DOI
10.3390/CIWC2020-06841
Publisher's Version
https://www.mdpi.com/2673-4605/2/1/21
Rights Statement
c 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library