AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of Morphology on the Bulk Density of Instant Whole Milk Powder

Wilson, D; Ding, H; Li, B; Boiarkina, I; Yu, W; Young, B
Thumbnail
View/Open
Journal article (4.938Mb)
Permanent link
http://hdl.handle.net/10292/13573
Metadata
Show full metadata
Abstract
The chemical and physical properties of instant whole milk powder (IWMP), such as morphology, protein content, and particle size, can affect its functionality and performance. Bulk density, which directly determines the packing cost and transportation cost of milk powder, is one of the most important functional properties of IWMP, and it is mainly affected by physical properties, e.g., morphology and particle size. This work quantified the relationship between morphology and bulk density of IWMP and developed a predictive model of bulk density for IWMP. To obtain milk powder samples with different particle size fractions, IWMP samples of four different brands were sieved into three different particle size range groups, before using the simplex-centroid design (SCD) method to remix the milk powder samples. The bulk densities of these remixed milk powder samples were then measured by tap testing, and the particles’ shape factors were extracted by light microscopy and image processing. The number of variables was decreased by principal component analysis and partial least squares models and artificial neural network models were built to predict the bulk density of IWMP. It was found that different brands of IWMP have different morphology, and the bulk density trends versus the shape factor changes were similar for the different particle size range groups. Finally, prediction models for bulk density were developed by using the shape factors and particle size range fractions of the IWMP samples. The good results of these models proved that predicting the bulk density of IWMP by using shape factors and particle size range fractions is achievable and could be used as a model for online model-based process monitoring.
Keywords
Instant whole milk powder; Bulk density; Morphology; Principal component analysis; Partial least squares; Artificial neural networks
Date
September 1, 2020
Source
Foods, 9(8), 1024. doi:10.3390/foods9081024
Item Type
Journal Article
Publisher
MDPI AG
DOI
10.3390/foods9081024
Publisher's Version
https://www.mdpi.com/2304-8158/9/8/1024
Rights Statement
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library