AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving the Robustness of Thermal Models of Naturally Ventilated Buildings

Pokhrel, M; Anderson, TN; Lie, TT
Thumbnail
View/Open
Conference contribution (641.2Kb)
Permanent link
http://hdl.handle.net/10292/12279
Metadata
Show full metadata
Abstract
Building Energy Simulation (BES) programs commonly employ a coupled multi-zone thermal and airflow network modelling approach to evaluate the natural ventilation in buildings. However, the robustness of such thermal-airflow models needs greater scrutiny. In particular, the method for determining the indoor-floor surface convective heat transfer coefficient (CHTC). In an attempt to make an initial investigation on this problem, this work utilized Computational Fluid Dynamics (CFD) for numerically examining the heat transfer and flow-fields in a typical room with a single sided window. While doing this, the convection heat transfer on the indoor floor surface driven by a thermal buoyancy effect established due to a temperature difference between inside surface of the floor and outside ambient was examined. The result showed that the heat transfer behavior of this partly open room was strongly influenced by the Rayleigh number (Ra) and the Window Opening Fraction (WOF). Further, it was found that the heat transfer on the floor varied significantly in a spatial context within the floor. As such, there is a significant scope of increasing the robustness of thermal models of naturally ventilated buildings by greater utilization of empirical relationships developed particularly for this purpose.
Date
December 5, 2017
Source
In Proceedings of the Asia Pacific Solar Research Conference 2017, Publisher: Australian PV Institute, Dec 2017, ISBN: 978-0-6480414-1-2
Item Type
Conference Contribution
Publisher
Australian PV Institute
Publisher's Version
http://apvi.org.au/solar-research-conference/wp-content/uploads/2018/04/Pokhrel-Anderson-Lie-Improving-the-robustness-of-heat-transfer-on-the-floor-of-naturally-ventilated-buildings-1.pdf
Rights Statement
Authors retain the right to place his/her publication version of the work on a personal website or institutional repository for non commercial purposes. The definitive version was published in (see Citation). The original publication is available at (see Publisher’s Version).

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library