AUT LibraryAUT
View Item 
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
  •   Open Research
  • AUT Faculties
  • Faculty of Design and Creative Technologies (Te Ara Auaha)
  • School of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, Pāngarau
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Significance of Powder Breakdown During Conveying Within Industrial Milk Powder Plants

Boiarkina, I; Sang, C; Depree, N; Prince-Pike, A; Yu, W; Young, B; Wilson, D
Thumbnail
View/Open
Journal article (3.025Mb)
Permanent link
http://hdl.handle.net/10292/10286
Metadata
Show full metadata
Abstract
Instant whole milk powder (IWMP) is designed to rapidly dissolve in water, which depends on the particle size distribution (PSD). The fragile milk powder exiting the dryer has to be conveyed for packing, which can break down the particles, worsening the dissolution properties. This work investigated the importance of in-plant conveying in determining the nal functional properties at the industrial scale. IWMP breakdown was compared between two plants with di erent transport systems; a pneumatic system and bucket elevator. It was expected that the plant with the bucket elevator consistently produced powder with superior dissolution due to lower breakdown during transport. This was evaluated using the change in PSD. It was found that both plants had a similar decrease in the median particle size, and powder with an initially larger particle size showed more breakdown. However, it was not enough to compensate for the initially larger size. Thus powder that started out larger still had a larger particle size after transport. When quanti ed using the change in bulk density, a low initial bulk density compensated for large breakdown during conveying and ameliorated the impact on the functional properties. Thus in order to produce IWMP with the desired functionalities the focus should be on improving the initial agglomeration, as oppose to reducing transport breakdown. 1
Keywords
Milk powder; Conveying; Attrition; Particle size
Date
April 30, 2016
Source
Advanced Powder Technology. Volume 27, Issue 6, November 2016, Pages 2363–2369
Item Type
Journal Article
Publisher
Elsevier
DOI
10.1016/j.apt.2016.10.019
Publisher's Version
http://www.sciencedirect.com/science/article/pii/S0921883116303089?via%3Dihub
Rights Statement
Copyright © 2016 Elsevier Ltd. All rights reserved. This is the author’s version of a work that was accepted for publication in (see Citation). Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. The definitive version was published in (see Citation). The original publication is available at (see Publisher's Version).

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateSchool of Engineering, Computer and Mathematical Sciences - Te Kura Mātai Pūhanga, Rorohiko, PāngarauTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library