Repository logo
 

Hybrid recommender system using association rules

Date

Supervisor

Pears, Russel

Item type

Thesis

Degree name

Master of Computer and Information Sciences

Journal Title

Journal ISSN

Volume Title

Publisher

Auckland University of Technology

Abstract

Recommender systems are increasingly being used in today’s world. Collaborative filtering, together with association rules mining are probably the most widely used methods to implement recommender systems. In this dissertation we undertake a review of past research conducted in the area of recommender systems with the focus being the use of association rule mining. We propose a novel methodology that combines the use of association mining with the use of distance metrics such as the Jaccard measure to identify movies that belong to the same genre. Our experimental results on the MovieLens dataset shows that the use of the Jaccard metric improved the coverage of recommendations over the use of the standard association rule mining method.

Description

Source

DOI

Publisher's version

Rights statement