Assessment of the entrapment of free fatty acids in goat milk by β-cyclodextrin and reduction of goaty flavour

aut.embargoNoen_NZ
aut.thirdpc.containsNoen_NZ
aut.thirdpc.permissionNoen_NZ
aut.thirdpc.removedNoen_NZ
dc.contributor.advisorYoung, Owen
dc.contributor.authorSadooghy-Saraby, Saeedeh
dc.date.accessioned2012-04-18T02:29:24Z
dc.date.available2012-04-18T02:29:24Z
dc.date.copyright2011
dc.date.created2011
dc.date.issued2011
dc.date.updated2012-04-18T01:51:51Z
dc.description.abstractGoat milk and its products have a significant role in human nutrition in many developing countries and some developed countries. Goat milk feeds more people in developing countries than cow milk. It is also useful as a food for people with cow milk allergies and gastrointestinal disorders. In developed countries, goat milk is often perceived as ‘healthier’ than cow milk and possibly for this reason has a growing market. However, its characteristic goaty flavour is a barrier to increased consumption. Prior research has shown that β-cyclodextrin, which can trap small hydrophobic molecules, reduces goat milk flavour due to certain free fatty acids (FFAs) when added at low concentrations to goat milk and goat milk products. This thesis explores the chemistry of this phenomenon. The concentration of FFAs responsible for goat milk flavour was increased when a lipase from Pseudomonas fluorescens was added. After addition of lipase, β-cyclodextrin was added at various times up to four hours. In all cases, FFA concentrations were increased by β-cyclodextrin, which at first sight is contrary to the idea that β-cyclodextrin reduces goat milk flavour. A chemical model to explain this paradox was developed. It was proposed that β-cyclodextrin increased FFA concentration by a mass action effect, because as a trap for FFAs it was a chemical ‘sink’ so enhancing lipase activity. The method to measure FFA concentration in these experiments determines total FFAs, trapped or otherwise, so it was of major interest to show whether or not these FFAs remained trapped in β-cyclodextrin, in suspension or solution, and were therefore unavailable for odour/flavour sensing in the headspace above goat milk. This was tested by dynamic headspace analysis of four goat milk treatments: milk; milk plus β-cyclodextrin; milk plus lipase; and milk plus lipase plus β-cyclodextrin. β-Cyclodextrin alone in milk reduced the profile of FFAs in the headspace, particularly of octanoic acid. Lipase greatly increased the headspace profile of FFAs as expected, but when β-cyclodextrin was also present, the profiles were even lower than for milk plus β-cyclodextrin. The reason for this apparent synergism is unknown, but it confirms why β-cyclodextrin is so effective in reducing goat milk odour/flavour in spite of its mass action effect. The remarkable effectiveness of β-cyclodextrin in reducing goat milk odour might also be due to preferential binding of goat-milk characterising branched chain fatty acids, like the potent 4-methyloctanoic acid, but which are present in only low concentrations in goat milk fat. A spectrophotometeric competition experiment with phenolphthalein showed that although branched chain fatty acids were more strongly bound by cyclodextrins including β-cyclodextrin than their straight chain geometric isomers (nonanoic for 4-methyloctanoic acid), the difference was not marked. It was concluded that the remarkable effectiveness of β-cyclodextrin in reducing goat milk flavour is best explained by its ability to bind nearly all FFAs.en_NZ
dc.identifier.urihttps://hdl.handle.net/10292/3867
dc.language.isoenen_NZ
dc.publisherAuckland University of Technology
dc.rights.accessrightsOpenAccess
dc.subjectFatty acidsen_NZ
dc.subjectBeta-Cyclodextrinsen_NZ
dc.subjectGoat milk flavouren_NZ
dc.titleAssessment of the entrapment of free fatty acids in goat milk by β-cyclodextrin and reduction of goaty flavouren_NZ
dc.typeThesis
thesis.degree.discipline
thesis.degree.grantorAuckland University of Technology
thesis.degree.levelMasters Theses
thesis.degree.nameMaster of Applied Scienceen_NZ
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sadooghy-SarabyS.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format
Description:
Whole thesis
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
897 B
Format:
Item-specific license agreed upon to submission
Description:
Collections