An Investigation Into Using Regenerated Cellulose-based Electro-conductive Composites for Actuation and Drug Delivery

aut.embargoNoen_NZ
aut.thirdpc.containsNoen_NZ
aut.thirdpc.permissionNoen_NZ
aut.thirdpc.removedNoen_NZ
dc.contributor.advisorAl-Jumaily, Ahmed
dc.contributor.advisorRobertson, John
dc.contributor.advisorRamos, Maximiano V.
dc.contributor.authorChowdhury, Nargis Afroj
dc.date.accessioned2014-09-17T21:33:05Z
dc.date.available2017-11-14T01:57:58Z
dc.date.copyright2014
dc.date.created2014
dc.date.issued2014
dc.date.updated2014-09-17T10:55:31Z
dc.description.abstractUnder the influence of an electric field, ionic electro-active polymers generally bend or deswell, depending on the shape of the polymer matrices and its position relative to the electrodes. In this study, we investigate the bending behaviour of regenerated cellulose-based ionic electro-active composites for the fabrication of soft actuators with improved actuation force and durability. This research also focuses on the externally induced (electrically and magnetically) matrices deswelling and other responses, which affect the release of drug from the matrices. For actuation studies, we prepared matrices by combining carbon nanofibers, conducting polymers, and ionic liquids (through blending, doping, or coating) into the regenerated cellulose. We observed that actuators coated by polypyrrole doped with anthraquinone-2-sulfonic acid sodium salt monohydrate showed improved electrical conductivity and durability compared to that of using perchlorate ion as the dopant. This is due to the preparation process and the effect of dopants that play an important role to improve the performance of the regenerated cellulose-based ionic electro-active actuators. In addition, we investigated the influence of electrode design (layer-by-layer structure) on the properties of the actuators. Further, in this study, we developed three types of matrices consisting of regenerated cellulose/functionalized carbon nanofibers, regenerated cellulose/functionalized carbon nanofibers/polypyrrole, and regenerated cellulose/γ-ferric oxide/polypyrrole. We investigated the effects of electric field strength and electrode polarity on the release rate of sulfosalicylic acid (drug) in an acetate buffer solution with pH 5.5 and temperature 37 ᵒC during a period of 5 h. Drug release rate from the matrices containing carbon nanofibers (additives) increased effectively with increasing applied electric field. The mechanism of drug release from drug-doped polypyrrole coated matrices includes expansion of conductive polymer chain and the electrostatic force between electron and drug. The novelty of the work is- the matrices can also work under magnetic field and consequently, one can be beneficial from a contactless actuation. In this study, we also investigated electrical conductivity, morphology, swelling behaviour of the composite matrices, electro-active composite-drug interaction, and in vitro drug release behaviour of the matrices. Further, a comparative study was performed on the rate of drug release from the matrices induced by electric and magnetic field.en_NZ
dc.identifier.urihttps://hdl.handle.net/10292/7696
dc.language.isoenen_NZ
dc.publisherAuckland University of Technology
dc.rights.accessrightsOpenAccess
dc.subjectDrug deliveryen_NZ
dc.subjectActuationen_NZ
dc.subjectTransdermal impalntsen_NZ
dc.titleAn Investigation Into Using Regenerated Cellulose-based Electro-conductive Composites for Actuation and Drug Deliveryen_NZ
dc.typeThesis
thesis.degree.discipline
thesis.degree.grantorAuckland University of Technology
thesis.degree.levelDoctoral Theses
thesis.degree.nameDoctor of Designen_NZ
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ChowdhuryNA.pdf
Size:
3.19 MB
Format:
Adobe Portable Document Format
Description:
Whole thesis
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
889 B
Format:
Item-specific license agreed upon to submission
Description:
Collections