AUT LibraryAUT
View Item 
  •   Open Research
  • Research Institutes and Centres
  • KEDRI - the Knowledge Engineering and Discovery Research Institute
  • View Item
  •   Open Research
  • Research Institutes and Centres
  • KEDRI - the Knowledge Engineering and Discovery Research Institute
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neuro-, genetic-, and quantum inspired evolving intelligent systems

Kasabov, N
Thumbnail
View/Open
04016729.pdf (14.10Mb)
Permanent link
http://hdl.handle.net/10292/603
Metadata
Show full metadata
Abstract
This paper discusses opportunities and challenges for the creation of evolving artificial neural network (ANN) and more general - computational intelligence (CI) models inspired by principles at different levels of information processing in the brain - neuronal-, genetic-, and quantum, and mainly - the issues related to the integration of these principles into more powerful and accurate ANN models. A particular type of ANN, evolving connectionist systems (ECOS), is used to illustrate this approach. ECOS evolve their structure and functionality through continuous learning from data and facilitate data and knowledge integration and knowledge elucidation. ECOS gain inspiration from the evolving processes in the brain. Evolving fuzzy neural networks and evolving spiking neural networks are presented as examples. With more genetic information available now, it becomes possible to integrate the gene and the neuronal information into neuro-genetic models and to use them for a better understanding of complex brain processes. Further down in the information processing hierarchy, are the quantum processes. Quantum inspired ANN may help solve efficiently the hardest computational problems. It may be possible to integrated quantum principles into brain-gene inspired ANN models for a faster and more accurate modeling. All the topics above are illustrated with some contemporary solutions, but many more open questions and challenges are raised and directions for further research outlined. © 2006 IEEE.
Date
2006
Item Type
Conference Proceedings
Publisher
IEEE
DOI
10.1109/ISEFS.2006.251165
Rights Statement
©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateKEDRI - the Knowledge Engineering and Discovery Research InstituteTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library