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Abstract — This paper discusses opportunities and challenges
for the creation of evolving artificial neural network (ANN) and
more general — computational intelligence (CI) models inspired
by principles at different levels of information processing in the
brain — neuronal-, genetic-, and quantum, and mainly — the
issues related to the integration of these principles into more
powerful and accurate ANN models. A particular type of ANN,
evolving connectionist systems (ECOS), is used to illustrate this
approach. ECOS evolve their structure and functionality
through continuous learning from data and facilitate data and
knowledge integration and knowledge elucidation. ECOS gain
inspiration from the evolving processes in the brain. Evolving
fuzzy neural networks and evolving spiking neural networks
are presented as examples. With more genetic information
available now, it becomes possible to integrate the gene and the
neuronal information into neuro-genetic models and to use
them for a better understanding of complex brain processes.
Further down in the information processing hierarchy, are the
quantum processes. Quantum inspired ANN may help solve
efficiently the hardest computational problems. It may be
possible to integrated quantum principles into brain-gene
inspired ANN models for a faster and more accurate modeling.
All the topics above are illustrated with some contemporary
solutions, but many more open questions and challenges are
raised and directions for further research outlined.

Keywords:  Artificial neural networks, Computational
Intelligence, = Neuro-informatics,  Bionformatics, = Evolving
connectionist systems, Gene regulatory networks, Computational
neurogenetic modeling, Quantum information processing.

1. INTRODUCTION: BRAIN-, GENE-, AND QUANTUM LEVELS OF
INFORMATION PROCESSING AS INSPIRATIONS FOR CI MODELS

The brain is an evolving information processing system
that evolves its structure and functionality in time through
information processing at different levels — Fig. 1.

At the quantum level, particles (e.g., atoms, electrons,
ions, photons, etc.) are in a complex evolving state all the
time (Hey 1999). The atoms are the material that everything
is made of. They can change their characteristics due to the
frequency of external signals (Feynman 1965, Brooks 1999).

At a molecular level, RNA and protein molecules evolve
in a cell and interact in a continuous way, based on the
stored information in the DNA and on external factors, and
affect the functioning of a cell (neuron) under certain
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conditions (Crick 1970).

6. Evolutionary (population/generation) processes

5. Brain cognitive processes

4. System information processing (e.g. neural ensemble)

3. Information processing in a cell (neuron)

2 Molecular information processing (genes, proteins)

1. Quantum information processing

Fig. 1. Levels of information processing in the brain and the interaction
between the levels.

At the level of a ncuron, the internal information
processes and the external stimuli cause the neuron to
produce a signal that carries information to be transferred to
other neurons.

At the level of neural ensembles, all neurons operate in a
“concert”, defining the function of the ensemble, for
instance perception of sound.

At the level of the whole brain, cognitive processes take

place, such as language and reasoning, and global
information  processes are  manifested, such as
consciousness.

At the level of a population of individuals, species
evolve through evolution changing the genetic DNA code
for a better adaptation.

The principles of each of the above processes have
inspired the creation of different ANN models with the goals
of:

- understanding the brain;
- creating powerful methods and systems of
computational intelligence (CI) for solving complex

problems in all areas of science and the humanity.

ANN models, that are brain-inspired (using some
principles from the brain), or brain-like (more biologically
plausible models, usually developed to model a brain
function) have already been proposed (for references, see :
Arbib 2003, Amari and Kasabov 1998). Examples are:
models of single neurons and neural network ensembles
(Rosenblatt 1962, Grossberg 1969 1982, (Amari 1967),
Rumelhart et al,1986; Carpenter et al, 1991; Kohonen, 1997,
Maas, 1996; Yamakawa et al, 1993; ); cognitive ANN
models (Arbib 2003, JG Taylor 1999; (Anderson); (Levine



and Aparicio), etc.)

The information processes at each level from Fig.1 are
very complex and difficult to understand, but much more
difficult is to understand the interaction between the
different levels. It may be that understanding the interaction
through its modeling would help to understand better each
level of information processing in the brain and perhaps the
brain as a whole, a to create powerful tools to solve
problems.

Some examples of ANN that combine principles from
different levels in fig.1 are:

- Computational neuro-genetic models (Marnellos and
Mjolsness 2003, Marcus 2004, Kasabov and Benuskova
2004, Benuskova 2006);

- Quantum inspired ANN (Ezhov and Ventura 2000,
Perkowski 2005, Spector 2004, Brooks 1999, Pribram
1993);

- Evolutionary ANN models (D Fogel 1995, J Yao 1993).

Suggestions are made also that modeling higher cognitive
functions and consciousness can be achieved only if the
principles of quantum information processing are considered
(Penrose 1989 1994).

There are many issues and open questions to be addressed
when creating ANN and CI models that integrate principles
from different levels. Here we will focus on the issues
related to a class of ANN models called evolving
connectionist systems (ECOS) (Kasabov 1998 2002). ECOS
are ANN that develop their structure and functionality over
time through incremental learning from incoming
information and through interaction.

The paper discusses in section 2 two particular models
inspired by the principles of evolving neuronal information
processes — local learning ECOS and evolving spiking
neural networks (SNN). In section 3, the issue of combining
neuronal with genetic information processing is discussed
and one particular computational neuro-genetic model
(CNGM) is presented for illustration along with a list of
open questions. Section 4 presents some ideas behind the
quantum inspired ANN models and offers further open
questions about the integration of principles from quantum-,
-genetic- and neuronal information processing.

2.

Many evolving ANN models have been suggested so far,
where the structure and the functionality of the models
evolve through incremental, continuous learning from
incoming data, some times in an on-line mode, and through
interaction with other models and the environment.
Examples are: growing neural gas (Fritzek 1995), RAN
(Platt  1991), cascade-correlation ANN (Fahlman and
Lebiere 1990), on-line learning ANN (Heskes and Kapen
1993, Haykin 1994, Freeman and Saad 1997, Hinton 1989,
Vapnik 1998, Blanzieri and Katenkamp 1996, Bishop 1995,
Schaal and Atkenson 1998), FuzzyARTMAP (Carpenter et
al, 1991), EFuNN (Kasabov, 1998, 2001), DENFIS
(Kasabov and Song, 2002), evolving fuzzy systems
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(Angelov, 2002) and others Here two models are presented
for illustration, mainly due to the author’s personal
involvement in their development, modifications and
applications. General open questions are raised at the end of
this section.

2.1 Local, knowledge—based learning: EFuNN, DENFIS
and TWNF

Incremental, local learning from a stream of input data
and specialization of an ensemble of neurons to perform a
certain function as part of a more global goal is a principle
of the human brain (Arbib 2003, W Freeman 2000).

Local learning ECOS are connectionist systems that
evolve their nodes (neurons) and connections between them
through incremental learning from data vectors where the
nodes capture local information from the data in a
supervised or unsupervised mode (Kasabov, 2002). One of
the ECOS models, the evolving fuzzy necural network
EFuNN (Kasabov, 2001), is shown in a simplified version in
fig.2. It consists of five layers: input nodes, representing
input variables; fuzzy input nodes, representing the degree to
which input values belong to fuzzy membership functions
that are used to define concepts such as Low value, or High
value for a variable; rule nodes, representing cluster centers
of samples in the problem space and their associated local
output functions; fuzzy output nodes, representing
membership degrees of the output values to predefined
output membership functions; and output nodes that
represent output variables. The fuzzy representation nodes
are optional.

ECOS evolve incrementally rule nodes to represent cluster

centers of the input data, where the first layer W1 of
connection weights of these nodes represent their co-
ordinates in the input space, and the second layer of
connections W2 represents the local models (functions)
allocated to each of the clusters.
Data samples are allocated to rule nodes based on their
similarity, measured either in the input space - this is the
case in some of the ECOS models, ¢.g. the dynamic neuro-
fuzzy inference system DENFIS (Kasabov and Song, 2002)
and the zero instruction set computers — ZISC, or in the
input and the output space - this is the case in the evolving
fuzzy neural networks EFuNN — fig.2. Samples that have a
distance to an existing cluster center (rule node) N of less
than a threshold Rmax (for the EfuNN models the output
vectors of these  samples have to be different from the
output value associated with this cluster center in not more
than an error tolerance E) are allocated in the same cluster
Nc. Samples that do not fit into existing clusters form new
clusters.

Cluster centers are continuously adapted to new data
between samples and nodes can be measured in different
ways. The most popular measurement is the normalized
Euclidean distance as it is in the self-organised maps SOM
(Kohonen 1997).

In case of missing values for some of the input variables,
a partial normalized Euclidean distance can be used which
means that only the existing values for the variables in a



current sample S (x,y) are used for the distance measure
between this sample and an existing node N:

d(S.N) = sqrt (T -1, (xi— Wly) *) /n, (1)

for all n input variables x; that have a defined value in the
sample S and an already established connection Wiy

Rule
Nodes

Fuzzy
Inputs

Fuzzy
Outputs

Fig.2. A simplified version of an evolving fuzzy neural network EFuNN
(from Kasabov, 2001)

At any time of the EFuNN or DENFIS continuous and
incremental learning, rules can be derived from the ANN
structure that represent the local functions. Each rule
associates a cluster area from the input variable space with a
local output function applied to the data in this cluster, ¢.g.:

IF <data is in cluster N¢j , defined by a cluster center Nj, a
cluster radius Rj and a number of examples Njex in this
cluster> THEN < output function is F¢> 2)

In case of DENFIS, first order local fuzzy rule models are
derived incrementally from data, for example:

IF <the value of x1 is in the arca defined by Gaussian
membership function with a center at 0.1 and a standard
deviation of 0.05, AND the value of x2 is in the area defined
by a Gaussian function with parameters (0.25,0.1)
respectively> THEN <the output y is calculated by the
formula: y=0.01+0.7x1+0.12x2> 3)

In case of EFuNN, local simple fuzzy rule models are

derived, for example:
IF: IF x1 is (Medium 0.8) and x2 is (Low 0.6)
THEN y is (High 0.7), radius R=0.24; Nexamp= 6, (€]

where: Low, Medium and High are fuzzy membership
functions defined for the range of each of the variables x1,
x2, and y; the number and the type of the membership
functions can either be deduced from the data through
learning algorithms, or it can be predefined based on human
knowledge (Zadeh 1965, Cloete and Zurada 2000,
Yamakawa et al 1993); R is the radius of the cluster and
Nexamp is the number of examples in the cluster.

Further development of the EFuNN and the DENFIS local
ECOS models is the Transductive Weighted Neuro- Fuzzy
Inference Engine (TWNFI) (Song and Kasabov, 2005). In
this approach, for every new vector (sample S/example) a
“personalized” model is developed from existing nearest
samples, where each of the variables is normalized in a
different sub-range of [0,1], so that they have a different
influence on the Euclidean distance, therefore they are
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weighted in terms of their importance to the output
calculated for any new sample individually. Samples are also
weighted in the model based on their distance to the new
sample, where in the Euclidean distance formula variables
arc also weighted. Each personalized model can be
represented as a rule (or a set of rules) that represent the
personalized profile for the new input vector. The TWNFI
model is evolving as new data samples, added to a data set,
can be used in any further personalized model development.
That includes using different sets of variables, features.

2.2, Incremental feature
connectionist systems

selection for evolving

The brain has the ability to incrementally improve and
optimize the set of features while learning continuously to
recognize patterns. In many CI problems data samples arrive
in chunks and sometimes — new class samples are presented
— see for illustration fig.3. Inspired by the brain ability to
select features incrementally, several methods have been
proposed.

v:

T3

Fig.3. Incremental presentation of chunks of data over time periods
T1,T2,..., having samples of initially 2 classes (time T1), but introducing at
atime T3 a third class samples (from Ozawa, et al, 2005).

In (Ozawa et al 2005 2006) a method for incremental
PCA learning from a stream of data is presented. In (Pang et
al, 2005) a method for incremental LDA feature selection is
proposed. While the structure of an ECOS is evolving
incrementally, the set of the input variables (features) in the
model can also be evolving, changing over time.

2.3. Evolving spiking neural networks (SNN)

Spiking models of a neuron and of neural networks —
spiking neural networks (SNN), have been inspired and
developed to mimic more biologically the spiking activity of
neurons in the brain when processing information (Maas
1996).

One model - the spike response model (SRM) of a neuron
(Maass and Bishop 1999, Gerstner and Kistler 2002) is
described below and extended to an evolving SNN. It is also
used in section 3 to create a computational neuro-genetic
model (CNGM).

A neuron i receives input spikes from pre-synaptic
neurons i € I, where T'i is a pool of all neurons pre-synaptic
to neuron i. The state of the neuron i is described by the state
variable ui(t) that can be interpreted as a total postsynaptic
potential (PSP) at the membrane of soma. When ui(t)
reaches the firing threshold ¥i(t), neuron i fires, i.e. emits a
spike — fig.4, fig.5. The moment of di(t) crossing defines a
firing time ti of an output spike. The value of the state
variable ui(t) is the sum of all postsynaptic potentials, i.c.



u ()= > J,(t—1,—A) )

vel; tyedsy
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Fig. 4. A general representation of a spiking neuron model (from Kasabov,
Benuskova, Wysoski, 2004).
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The positive kernel 8’1( J ’f) &y ) expresses an
individual postsynaptic potential (PSP) evoked by a
presynaptic neuron j on neuron i.

A double exponential formula can be used, where

synapse
decay/ rise

are time constants of the rise and fall of an
individual PSP, A is the PSP's amplitude, and synapse
fast_excitation, fast_inhibition, slow_excitation, and

j - exp [— —Tfﬁzapse J

slow_inhibition, respectively. These types of PSPs are
based on neurobiological data (Destexhe 1998, Semyanov
2002).

Immediately after firing an output spike at time ti, the
neuron's firing threshold Bi(t), increases m times and then
returns to its initial value 90 in an exponential fashion:

synapse
€ i

(s) = ©)

A

synapse
T decay

A synapse eXp {_

it ©)

T
decay

v(t—t)=mx, exp| -

s
where D is the time constant of the threshold decay. In

such a way, absolute and relative refractory periods are
modeled — fig.5.
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Fig. 5. Spiking behavior of a neuron — the spiking threshold increases after
the first spike and then goes back to a normal state (from Kasabov,

Benuskova, Wysoski, 2005)

External inputs from the input layer are added at each
time step, thus incorporating the background noise and/or
the background oscillations. Each external input has its own

ext _ input
weight i and & ), such that:

ufxlijnpu (Z) — J;{xliinpul gik (Z) (8)

It is optional to add some degree of Gaussian noise to the
right hand side of the equation above to obtain a stochastic
neuron model instead of a deterministic one.

Spiking neurons within a SNN can be either excitatory or
inhibitory. Lateral connections between neurons in a SNN
may have weights that decrease in value with distance from
neuron i for instance according to a Gaussian formula while
the connections between neurons themselves can be
established at random.

SNN can be used to build biologically plausible models of
brain sections as illustrated in (Destexhe 1998, Kasabov and
Benuskova, 2004).

In evolving SNN new neurons and connections can be
created incrementally to accommodate new data samples
over time. For example, in (Wysoski et al 2006) a new sub-
module of several spiking neurons and connections is
evolved when a new class of objects (e.g. a new face, in case
of face recognition problem) is presented to the system for
learning at any time of this process. In addition to the on-line
creation of new class structures in a SNN, such new
structures can be created when a new sample of a previously



introduced class does not activate any of the existing
neurons (structures), similar to the ECOS described in the
previous section. This work extends the work in (Delorme et
al 1999).

Developing new methods for learning in evolving SNN is
a challenging direction for future research with a potential
for applications in multimodal information processing (e.g.
speech, image, odor, gestures).

2.4. Some open questions

Further development of brain-like or brain-inspired ANN
requires some questions to be addressed:

e How much should an ANN mimic the brain in order to
be an efficient CI model?
How is a balance between structure definition and
learning achieved in ANN?
How can ANN evolve and optimize their parameters
and input features over time in an efficient way?
How incremental learning in ANN can be achieved
without a presentation of an input signal (“sleep”
learning)?
Can ANN have “dreams” and how that can affect their
evolving learning and structure?

3. BRAIN-GENE INSPIRED COMPUTATION AL NEURO-GENETIC
MODELS (CNGM)

3.1. General notions

With the advancement of molecular and brain research
technologies more and more data and information is being
made available about the genctic basis of some neuronal
functions (see for example: the brain-gene map of mouse at
http://alleninstitute.org, the brain-gene ontology BGO at
http://www kedri.info).

This information can be utilized to create biologically
plausible ANN models of brain functions and diseases that
include models of gene interaction. This area integrates
knowledge from computer and information science, brain
science, molecular genetics and it is called here
computational neurogenetic modeling (CNGM) (Kasabov
and Benuskova 2004).

Several CNGM models have been developed so far
varying from modeling a single gene in a biologically
realistic ANN model, to modeling a set of genes forming an
interaction gene regulatory network (GRN) (Marnellos and
Mjolsness 2003, Kasabov and Benuskova 2004, Marcus
2004, Benuskova et al 2006). In this section we give an
example of a CNGM that combines SNN and GRN into one
model.

3.2. Am abstract computational neuro-genetic model
(CNGM) that integrates GRN within a SNN model

The main idea behind the model proposed in (Kasabov
and Benuskova 2004) is that interaction of genes in neurons
affect the dynamics of the whole ANN through neuronal
parameters, which are no longer constant, but change as a
function of gene/protein expression. Through optimization
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of the GRN, the initial gene/protein expression values, and
the ANN parameters, particular target states of the ANN can
be achieved, so that the ANN can be tuned to model real
brain data in particular.

This idea is illustrated here by means of a simple
neurogenetic model of a SNN. The behavior of the SNN is
evaluated by means of the local field potential (LFP), thus
making it possible to attempt modeling the role of genes in
different brain states, where EEG data is available to test the
model. A standard FFT signal processing technique is used
to evaluate the SNN output and to compare it with real
human EEG data. Broader theorctical and biological
background of CNGM construction is given in (Kasabov and
Benuskova, 2004). A simple linear version of an internal
GRN with preliminary results on epilepsy modeling can be
found in (Kasabov and Beniskova, 2004). In (Benuskova et
al 2006) a more realistic nonlincar model of GRN is
proposed with a list of real proteins/genes that are involved
in CNGM. The model performance is compared to real
human EEG data using the same signal processing
technique, where an optimization procedure is proposed to
obtain a CNGM with parameters leading to modeling of the
real EEG signal.

In general, we consider two sets of genes — a set Gge, that
relates to general cell functions, and a set Gy that defines
specific  neuronal  information-processing  functions
(receptors, ion channels, etc.). The two sets form together a
set G={G, Ga. ..., G,}. We assume that the expression level
of each gene is a nonlinear function of expression levels of
all the genes in G, inspired by discrete models:

n 9
g,(t+ A" = G(Z W8 <t>j @
k=1
It is assumed here that: (1) one protein is coded by one
gene; (2) relationship between the protein level and the gene
expression level is nonlinear; (3) protein levels lie between
the minimal and maximal values. Thus, the protein level is
expressed by the following equation:

(a _ 10
p;(t+ A =(p™ - p}"m)d(z W& (t)j +p 90

k=1

The delay constant introduced in the formula corresponds
to the delay caused by the gene transcription, mRNA
translation into proteins and posttranslational protein
modifications, and also the delay caused by gene
transcription regulation by transcription factors.

Some proteins and genes are known to be affecting the
spiking activity of a neuron represented in a SNN model by
neuronal parameters. Some neuronal parameters and their
correspondence to particular proteins are summarized in
Table 1.

Relevant protein expression levels are directly related to
neuronal parameter values P; such that:
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where Pj(0) is the initial value of the neuronal parameter at

time t=0.

Besides the genes, coding for the proteins mentioned
above and directly affecting the spiking dynamics of a
neuron, a GRN model can include other genes relevant to a
problem in hand, e.g. modeling a brain function or a brain
disease. In (Benuskova et al 2006) these genes/proteins are:
c-jun, mGLuR3, Jerky, BDNF, FGF-2, IGF-1, GALR1,
NOS, S100beta.

An example of a CNGM is given in fig.6 for the purpose
of modeling inputs from the thalamus to the cortex. It uses
the Spike Response Model (Gerstner and Kistler 2002), with
excitation and inhibition having both fast and slow
components, both expressed as double exponentials with
amplitudes and the rise and decay time constants.

The goal of the CNGM is to achieve a desired SNN output
through optimization of the model parameters. The LFP of
the SNN, defined as LFP = (1/N)X uy(t), by means of FFT is
evaluated in order to compare the SNN output with the EEG
signal analyzed in the same way. It has been shown that
brain LFPs in principle have the same spectral
characteristics as EEG (Kirk and Mackay 2003).

In order to find an optimal GRN within the SNN model,
so that the frequency characteristics of the LFP of the SNN
model are similar to the brain EEG characteristics, the
following evolutionary computation procedure is used:

1. Generate a population of CNGMs, each having randomly
generated values of coefficients for the GRN matrix W,
initial gene expression values g(0), initial values of SNN
parameters P(0), and different connectivity;

2. Run each SNN over a period of time T and record the LFP

3. Calculate the spectral characteristics of the LFP using
FFT,

TABLEI
NEURONAL PARAMETERS AND THEIR RELATED PROTEINS

Neuronal parameter

AMPLITUDE AND TIME CONSTANTS  Protein*
OF
Fast excitation PSP AMPAR
Slow excitation PSP NMDAR
Fast inhibition PSP GABRA
Slow inhibition PSP GABRB
Firing threshold SCN, KCN, CLC

*Abbreviations: PSP = postsynaptic potential, AMPAR (amino-
methylisoxazole- propionic acid) AMPA receptor, NMDAR = (N-
methyl-D-aspartate acid) NMDA receptor, GABRA (gamma-
aminobutyric acid) GABA, receptor, GABRB = GABA, receptor, SCN
= Sodium voltage-gated channel, KCN = kalium (potassium) voltage-
gated channel, CLC = chloride channel.

4. Compare the spectral characteristics of SNN LFP to the
characteristics of the target EEG signal. Evaluate the
closeness of the LFP signal for cach SNN to the target
EEG signal characteristics. Proceed further according to
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the standard GA algorithm to find a SNN model that
matches the EEG spectral characteristics better than
previous solutions;

5. Repeat steps 1 to 4 until the desired GRN and SNN model
behavior is obtained;

6. Analyze the GRN and the SNN parameters for significant
gene patterns that cause the SNN model to manifest similar
spectral characteristics as the real data.

Cortex
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P - », Y .
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0,0 @ O network
0O 0 00
O 0 O @ ©
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N \ feedforward input
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Figure 6. An example of a SNN model used in a CNGM. About 10-20% of
N =120 neurons are inhibitory neurons that are randomly positioned on the
grid (filled circles). External input is random with a defined average
frequency (e.g. between 10-20 Hz) (from Benuskova et al 2006).
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In (Kasabov et al 2005) some preliminary results of
analysis performed on real human interictal EEG data are
presented. The model performance and the real EEG data are
compared for the following relevant to the problem sub-
bands: delta (0.5-3.5 Hz), theta (3.5-7.5 Hz), alpha (7.5-12.5
Hz), beta 1 (12.5-18 Hz), beta 2 (18-30 Hz), gamma (above
30 Hz). This particular SNN had an evolved GRN with only
5 genes out of 16 (s100beta, GABRB, GABRA, mGLuR3,
c-jun) and all other genes having constant expression values.
A GRN is obtained that has a meaningful interpretation and
can be used to model what will happen if a gene/protein is
suppressed by administering a drug, for example.

In evolving CNGM new genes can be added to the GRN
model at a certain time, in addition to the new spiking
neurons and connections created incrementally, as in the
evolving SNN. Developing new evolving CNGM to model
brain functions and brain diseases, such as epilepsy,
Alzheimer, Parkinson disease, Schizophrenia, mental
retardation and others is a challenging problem for a future
research.

We should again emphasize on the fact that the above
described model is an abstract one and not necessarily
modeling real genes and their physical and chemical
connections and functions, but rather — their indirect
relationship and interaction.

There are some technical questions that emerged from the
first CNGM experiments, such as:

How many different GRNs would lead to similar LFPs of
the same SNN and what do they have in common?

What neuronal parameters to include in the SNN model
and how to link them to activities of genes/proteins?



- What genes/proteins to include in the model and how to
represent the gene interaction over time within each
neuron?

- How to integrate in time the output activity of the SNN
and the genes, as it is known that neurons spike in
millisecond intervals and the process of gene
transcription and translation into proteins takes minutes?

- How to create and validate a CNG model in a situation of
msufficient data?

- How to measure brain activity and the CNGM activity in
order to validate the model?

- What useful information (knowledge) can be derived
from a CNG model?

- How to adapt incrementally a CNGM model in a
situation of new incoming data about brain functions and
genes related to them?

3.3. Open questions

Integrating principles from gene- and neuronal
information processing in a single ANN model raises many
general questions that need to be addressed in the future, for
example:

- Is it possible to create a truly adequate CNGM of the
whole brain? Would gene-brain maps help in this respect
(see http://alleninstitute.org)?

- How can dynamic CNGM be used to trace over time and
predict the progression of a brain diseases, such as
epilepsy and Parkinson’s ?

- How to use CNGM to model gene mutation effects?

- How to use CNGM to predict drug effects?

- How CNGM can help understand better brain functions,
such as memory and learning?

- What problems of CI can be efficiently solved with the
use of a brain-gene inspired ANN?

4. QUAN TUM INSPIRED EVOLVING CONNECTIONIST MODELS

4.1. Why quantum inspired models and systems?

Quantum computation is based upon physical principles
from the theory of quantum mechanics. (see R. P. Feynman
et al, 1965).

One of the basic principles is the linear superposition of
states. At a macroscopic or classical level a system exists
only in a single basis state as energy, momentum, position,
spin and so on. However, at microscopic or quantum level a
quantum particle (e.g., atom, electron, positron, ion), or a
quantum system is in a superposition of all possible basis
states. At the microscopic level any particle can assume
different positions at the same time, can have different
values of energy, can have many values of the spins and so
on. This superposition principle is counterintuitive.

If a quantum system interacts in any way with its
environment, the superposition is destroyed and the system
collapses into one single real state as in the classical physics
(Heisenberg). This process is governed by a probability
amplitude. The square of the intensity of the probability
amplitude is the quantum probability to observe the state.

Another quantum mechanics principle is the entanglement

- two or more particles, regardless of their location, are in
the same state with the same probability function. The two
particles can be viewed as “correlated”, undistinguishable,
“synchronized”, coherent. An example is a laser beam
consisting of millions of photons having same characteristics
and states.

Quantum systems are described by a probability density
that exists in a Hilbert space. The Hilbert space has a set of
states |pi) forming a basis. A system can exist in a certain
quantum state |y) which is defined as:

W) = 2cilob), 12
where the coefficients ci may be complex. |y) is said to be in
a superposition of the basis states |¢pi). For example the
quantum inspired analogue of a single bit in classical
computers can be represented as a qu-bit in a quantum
computer:

[x)=al0) + b|1) (13)

where |0) and |1) represent the states 0 and 1. The qu-bit is

not a single value entity, but is a function of parameters

which values are complex numbers. After the loss of

coherence the qu-bit will collapse into one of the states |0) or

|1y with the probability a* for the state |0) and the probability
b® for the state |1), where: [a? + [b2 = 1.

So, in quantum mechanics and in any scientific domain,
where we use the superposition, the introduction of the qu-
bit to measure information states change radically any
interpretation of the information processes and also of any
computation.

The state of a qu-bit can be changed by an operation
called a quantum gate. A quantum gate is a reversible gate
and can be represented as a unitary operator U acting on the
qu-bit basis states. The defining property of an unitary
matrix is that its conjugate transpose is equal to its inverse.
There are several quantum gates already introduced, such as
the NOT gate, controlled NOT gate, rotation gate, Hadamard
gate, etc. (Perkowski 2005, Collin et al 1998).

Quantum mechanical computers and quantum algorithms
try to exploit the massive quantum parallelism which is
expressed in the principle of superposition. The principle of
superposition can be applied to many existing methods of
CI, where instead of a single state (¢.g. a parameter value, or
a finite automata state, or a connection weight, etc.) a
superposition of states will be used, described by a wave
probability function, so that all these states will be computed
in parallel increasing the speed of computation by many
orders of magnitude.

Quantum mechanical computers have been proposed in
the early 1980s and a description was formalized in the late
1980s (P. Benioff 1980). This kind of computers proved to
be superior to classical computers in various specialized
problems. Many efforts were undertaken to extend the
principal ideas of quantum mechanics to other fields of
interest. There are well known quantum algorithms such as
Shor's quantum factoring algorithm (P. W. Shor 1997) and
Grover's database search algorithm (L. K. Grover 1996).



Hogg extended the work of Grover in order to demonstrate
the application of quantum algorithms in the context of
combinatorial search (T. Hogg and D. Portnov, 2000).

The advantage of quantum computing is that, while a
system is uncollapsed, it can carry out more computing than
a collapsed system, because, in a sense, it is computing in
many universes at once. The above quantum principles have
inspired research in both computational methods and brain
study.

It is widely accepted now that NP-hard problems (e.g.
time complexity grows exponentially with the size of the
problem) can be solved by a quantum computer. Penrose
(1994) argues that solving the quantum measurement
problem is pre-requisite for understanding the mind as
consciousness emerges as a macroscopic quantum state due
to a coherence of quantum-level events within neurons.

4.2. Quantum inspired evolutionary and connectionist
models

Quantum inspired methods of evolutionary computation
(QIEC) have been already discussed in (K.-H. Han and J.-H.
Kim 2002, J.-S. Jang et al 2003), that include: genetic
programming (L. Spector 2004), particle swarm optimizers
(J. Liu et al, 2005), finite automata and Turing machines (P.
Benioff, 1980). In QIEC, the population of Q-bit individuals
at time t can be represented as:

O(t)=1{4q{.495,.-.49,}

where n is the size of the population.

Evolutionary computing with Q-bit representation has a
better characteristic of population diversity than other
representations, since it can represent linear superposition of
states probabilistically. The Q-bit representation leads to a
quantum parallelism in the system as it is able to evaluate
the function on a superposition of possible inputs. The
output obtained is also in the form of superposition which
needs to be collapsed to get the actual solution.

Recent research activities focus on using quantum
principles for ANN (Venrura 1999, Ezhov and Ventura
2000; Resconi et al 1999 2000, Narayanan and Mencer
2000; Venayagamoorthy et al, 2006). Considering quantum
ANN seems to be important for at least two reasons. There is
evidence for the essential role that quantum processes may
play in realizing information processing in the living brain.
Roger Penrose argued that a new physics binding quantum
phenomena with general relativity can explain such mental
abilities as understanding, awareness and consciousness (R.
Penrose, 1994). The second motivation is the possibility that
the field of classical ANN could be generalized to the
promising new field of quantum computation (M. Brooks
1999). Both considerations suggest a new understanding of
mind and brain function as well as new unprecedented
abilities in information processing. Ezhov and Ventura are
considering the quantum neural networks as the next natural
step in the evolution of neurocomputing systems (A. Ezhov
and D. Ventura, 2000). Several quantum inspired ANN
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models have been proposed and illustrated on small
examples. In (Venayagamoorthy et al, 2006) a QIEA is used
to train a MLP ANN.

Naraynan and Meneer simulated classical and various
types of quantum inspired ANN and compared their
performance (A.Narayanan and T. Meneer, 2000). Their
work suggests that there are indeed certain types of problems
for which quantum neural networks will prove much
superior to classical ones.

Other relevant work includes quantum decision making
(M. T. D. Cronin et al 2003), quantum learning models (N.
Kouda 2005), quantum networks for signal recognition (X.-
Y. Tsai et al 2005) and quantum associative memory (C. A.
Trugenberger 2002, D. Ventura and T. Martinez 2000).
There are also recent approaches to quantum competitive
learning where the quantum system's potential for excellent
performance is demonstrated on real-world data sets (D.
Ventura, 1999; G. Xie and Z. Zhuang, 2003).

The quantum inspired neural network (QUINN) proposed
by Narayanan and Mencer (2000) interprets ecach input
pattern Sp (p=1,2,...k) as a particle, being learned in a
scparate NNp model in a separate universe Up, the
superposition of all ANN constituting the ANN model. The
structure of all ANN is the same, so that a connection weight
between neuron Ni and neuron Nj in the total model is a
superposition of all connection weights Wij (k) of all k
ANNs. When an input pattern S is presented, the ANN
model “collapses” into a particular NN-S that recognises
this pattern. Each pattern needs to be presented only once in
order a NN model to be created for this pattern and become
part of the superposition of all NN models.

In evolving quantum inspired ANN, presenting a new
pattern S k+1 (a new particle) would cause the creation of a
new ANN model that becomes part of the superposition of
connection weights and states of the whole system.

Quantum inspired SNN would have a smaller number of
neurons and a much larger number of states due to the
superposition principle. A challenge would be to represent
the spikes as superposition of trains of signals across many
QI-SNN.

4.3. A quantum inspired CNGM — a preliminary
conceptual model

A QI-CNGM would open new possibilities for modelling
gene-neuron interactions. In section 3 a CNGM was
presented that combines principles of information processing
in gene/protein molecules with neuronal spiking activity,
and then — to the information processing of a neuronal
ensemble that is measured as local field potentials (LFP).
How the quantum information processes in the atoms and
particles (ions, clectrons, etc), that make the large
gene/protein molecules, relate to the spiking activity of a
neuron and to the activity of a neuronal ensemble, is not
known yet and it is a challenging question for the future.

What is known at present, is that the spiking activity of a
neuron relates to the transmission of thousands of ions and
neurotransmitter molecules across the synaptic clefts, and to



the emission of spikes. Spikes, as carriers of information, are
electrical signals made of particles that are emitted in one
neuron and transmitted along the nerves to the synapses of
many other neurons. These particles are characterized by
their quantum properties. So, quantum properties may
influence, under certain conditions, the spiking activity of
neurons and of the whole brain, as brains obey the laws of
quantum mechanics (as everything else does).

Similarly to a chemical effect of a drug to the protein and
gene expression levels in the brain, that may affect the
spiking activity and the functioning of the whole brain
(modelling of these effects is subject of the computational
neurogenetic modelling CNGM), external factors like
radiation, high frequency signals etc. may influence the
quantum properties of the particles in the brain through gate
operators and their spiking activity as well. According to
Penrose (1989), microtubules in the neurons are associated
with quantum gates.

So, the question is: Is it possible to create CNGM that
incorporate some quantum principles, QI-CNGM?

We can represent the above problem as a set of
preliminary hypothetical functions as follows. A future state
Q' of a particle or a group of particles (¢.g. ions, electrons,
etc.) depends on the current state Q and on the frequency
spectrum Eq of an external signal, according to the Max
Planck constant:

Q =Fq (Q. Eq). (15)

A future state of a molecule M' or a group of molecules
(e.g. genes, proteins) depends on its current state M, on the
quantum state Q of the particles that make this molecule, and
on an external signal Em:

M'=Fm (M, Q.Em), (16)

A future state N' of a spiking neuron, or an ensemble of
neurons will depend on its current state N, on the state of the
molecules M, on the state of the particles Q and on external
signals En

N'= Fn (N,M,Q.En), (17)

A future cognitive state C* of the brain will depend on its
current state C and also on the neuronal N, on the molecular-
M, and on the quantum Q states of the brain:

C'=Fc (C.N.M.Q.E0). (18)

Some support for the above hypothetical model of
integrated function representation comes from the following
assumptions (Penrose 1989 1994, Arbib 2003, JG Taylor
1999, Freeman 2000):

- A large amount of atoms are characterised by the same
quantum propertics, possibly related to the same
gene/protein expression profile of a large amount of neurons
characterised by spiking activity;

- A large neuronal ensemble can be represented by a single
LFP;

- A cognitive process can be represented perhaps as a
complex function Fc that depends on all previous levels.
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4.4. Some open questions

Many open questions need to be addressed before the
quantum inspired models and systems are established as part
of the area of CI and especially — to model bioinformatics
and neuro-informatics data. Some of them are listed below:

* How quantum processes affect the functioning of a living
system in general?

* How quantum processes affect cognitive and mental
functions?

» Is it true that the brain is a quantum machine — working
in a probabilistic space with many states (e.g. thoughts)
being in a superposition all the time and only when we
formulate our thought through speech or writing, then the
brain “collapses” in a single state?

» Is fast pattern recognition in the brain, involving far
away segments, a result of both parallel spike
transmissions and particle entanglement?

* Is communication between people and between living
organisms in general, a result of entanglement processes?

»  How does the energy in the atoms relate to the energy of
the proteins, the cells and the whole brain?

*+ Would it be beneficial to develop different quantum
mspired (QI) computational intelligence techniques, such
as: QI-SVM, QI-GA, Ql-decision trees, QI-logistic
regression, Ql-cellular automata, QI-ALife?

*  How do we implement the QI computational intelligence
algorithms in order to benefit from their high speed and
accuracy? Should we wait for the quantum computers to
be realised many years from now, or we can implement
them efficiently on specialised computing devices based
on classical principles of physics?

5. CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

This paper presents some CI methods and in particular -
evolving ANN models, inspired by principles from different
levels of information processing in the brain — including
higher cognitive level, gene/protein level, and quantum
level, and argues that ANN models that integrate principles
from different levels of information processing would be
beneficial for a better understanding of brain functions and
for the creation of more powerful methods and systems of
computational intelligence in general.

Integrating principles from quantum-, molecular-, and
brain information processing is important because:

- This would lead to a better understanding of both
molecular and quantum information processing;

- Modelling molecular processes is needed for progress in
many areas of biology, chemistry and physics;

- At the nano-level of microelectronic devices, quantum
processes may have a significant impact;

- Using these processes is a strong inspiration for new
computer devices — million times faster and more
accurate

Further directions in this research are:



Building large ontology systems that integrate facts,
mformation, and CI models of the three levels of
imformation processing in the brain and their interaction,
such as brain-gene-quantum ontology systems;
Building novel brain-, gene-, and quantum inspired ANN
and CI models, such as: new ECOS, evolving SNN,
evolving CNGM, QI-CNGM, QI-SVM, etc.

Studying the characteristics of the above models and
interpreting the results
Applying the new methods to solving complex problems
in neuro-informatics, such as modeling learning and
memory, understanding brain diseases, etc.
Applying the new methods to solve complex problems in
bioinformatics, such as selecting dynamically genes and
proteins related to cancer, modeling cellular processes,
modeling gene regulatory networks and metabolic
pathways
Applying the new methods for multimodal information
processing, biometric tasks, robotics, and other practical
tasks of computational intelligence.
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