AUT LibraryAUT
View Item 
  •   Open Research
  • Research Institutes and Centres
  • KEDRI - the Knowledge Engineering and Discovery Research Institute
  • View Item
  •   Open Research
  • Research Institutes and Centres
  • KEDRI - the Knowledge Engineering and Discovery Research Institute
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evolving connectionist systems based role allocation of robots for soccer playing

Huang, L.; Song, Q.; Kasabov, N
Thumbnail
View/Open
01466988.pdf (347.4Kb)
Permanent link
http://hdl.handle.net/10292/597
Metadata
Show full metadata
Abstract
For a group of robots (multi-agents) to complete a task, it is important for each of them to play a certain role changing with the environment of the task. One typical example is robotic soccer in which a team of mobile robots perform soccer playing behaviors. Traditionally, a robot's role is determined by a closed-form function of a robot's postures relative to the target which usually cannot accurately describe real situations. In this paper, the robot role allocation problem is converted to the one of pattern classification. Evolving classification function (ECF), a special evolving connectionist systems (ECOS), is used to identify the suitable role of a robot from the data collected from the robot system in real time. The software and hardware platforms are established for data collection, learning and verification for this approach. The effectiveness of the approach are verified by the experimental studies. ©2005 IEEE.
Date
2005
Item Type
Conference Proceedings
Publisher
IEEE
DOI
10.1109/.2005.1466988
Rights Statement
©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateKEDRI - the Knowledge Engineering and Discovery Research InstituteTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library